测绘学报 ›› 2015, Vol. 44 ›› Issue (7): 813-821.doi: 10.11947/j.AGCS.2015.20140198

• 地图学与地理信息 • 上一篇    下一篇

基于方向关系矩阵的空间方向相似性定量计算方法

陈占龙1,2, 周林1, 龚希1, 吴亮1   

  1. 1. 中国地质大学(武汉)信息工程学院, 湖北 武汉 430074;
    2. 地理信息工程国家重点实验室, 陕西 西安 710054
  • 收稿日期:2014-04-23 修回日期:2015-03-19 发布日期:2015-07-28
  • 通讯作者: 吴亮,E-mail:wuliang133@189.cn E-mail:wuliang133@189.cn
  • 作者简介:陈占龙(1980-),男,副教授,博士,主要研究方向为空间分析算法、空间推理、地理信息系统软件开发与应用。
  • 基金资助:

    国家自然科学基金(41401443);国家科技支撑计划(2011BAH06B04);地理信息工程国家重点实验室开放基金(SKLGIE2013-Z-4-1);测绘遥感信息工程国家重点实验室资助项目(13I02);中央高校基本科研业务费专项(CUGL130260)

A Quantitative Calculation Method of Spatial Direction Similarity Based on Direction Relation Matrix

CHEN Zhanlong1,2, ZHOU Lin1, GONG Xi1, WU Liang1   

  1. 1. Department of Information Engineering, China University of Geosciences, Wuhan 430074, China;
    2. State Key Laboratory of Geography Information Engineering, Xi'an 710054, China
  • Received:2014-04-23 Revised:2015-03-19 Published:2015-07-28
  • Supported by:

    The National Natural Science Foundation of China (No. 41401443);The National Key Technology Research and Development Program of the Ministry of Science and Technology of China (No. 2011BAH06B04);Open Research Fund of State Key Laboratory of Geography Information Engineering(No.SKLGIE2013-Z-4-1);Open Research Fund of State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (No. 13I02);Research Funds for the Central Universities Basic Special Projects (No.CUGL130260)

摘要:

介绍了一种多尺度空间对象的方向关系表达模型以及基于该模型的方向相似度度量方法。该方向关系模型对方向关系矩阵模型进行了改进,根据空间对象的形状定量描述空间对象之间的方向关系;借鉴平衡传输问题的解决方法计算方向矩阵间最小转换代价,即方向矩阵间的距离,从而量化方向对间的差异,最终获得任意尺度空间对象的方向相似度并对其进行比较。对不同尺度空间对象的方向相似性的试验表明,该方法简单可行且不失精度,结果符合人类认知。

关键词: 多尺度, 空间对象, 方向相似度, 方向关系矩阵, 邻域图

Abstract:

This article introduces a new model for direction relations between spatial objects at multiple scales and a corresponding similarity assessment method. The model is an improvement of direction relation matrix, which quantitatively models direction relations on object scale, and by means of the solution of the Transportation Problem to solve the minimum conversion cost between direction matrices, namely distance between a pair of matrices, thus quantified the difference between a pair of directions, finally obtain the similarity values between arbitrary pairs of spatial objects and compare the results. Experiments on calculating similarity between objects at different scales show that the presented method is efficient, accurate, and capable of obtaining results consistent with human cognition.

Key words: multi-scales, spatial objects, direction similarity, direction relation matrix, neighborhood graph

中图分类号: