测绘学报 ›› 2016, Vol. 45 ›› Issue (7): 841-849.doi: 10.11947/j.AGCS.2016.20150381
巫兆聪, 巫远, 张熠, 杨帆
收稿日期:
2015-07-17
修回日期:
2016-03-09
出版日期:
2016-07-20
发布日期:
2016-07-28
作者简介:
巫兆聪(1968-),男,教授,研究方向为卫星仿真与效能评估。E-mail:zcwoo@whu.edu.cn
基金资助:
WU Zhaocong, WU Yuan, ZHANG Yi, YANG Fan
Received:
2015-07-17
Revised:
2016-03-09
Online:
2016-07-20
Published:
2016-07-28
Supported by:
摘要: 传统光学卫星国土观测覆盖评估建立在卫星对地理想覆盖的基础上,并未考虑卫星存储、星地数据传输、观测时长等物理量及观测区域气象因素对于覆盖性能的影响。本文针对光学遥感卫星的国土观测需求,建立国土观测有效覆盖能力评估指标体系,根据卫星数据存储能力、星地数据传输能力、卫星单圈最大观测时长、卫星观测太阳高度角等性能参数,提出了基于物理性能约束下的有效覆盖计算方法。根据气象台站历年气象数据,提出了气象约束因子的计算方法。综合考虑卫星物理性能约束与观测区域气象约束,计算光学遥感卫星对地观测有效覆盖能力。最后根据专家设计的光学遥感卫星国土观测有效覆盖能力评估指标权重,利用层次分析法(AHP)评估光学遥感卫星系统对于国土观测的需求满足程度。试验结果表明,本文方法对于国土观测有效覆盖的估算和评价结果更加精确,更接近于国土观测的实际应用需求,为对地观测有效覆盖能力评估提供了一种更为精确的可行方案。
中图分类号:
巫兆聪, 巫远, 张熠, 杨帆. 附有物理量和气象条件约束的光学卫星国土观测有效覆盖率评估[J]. 测绘学报, 2016, 45(7): 841-849.
WU Zhaocong, WU Yuan, ZHANG Yi, YANG Fan. Land Observation Evaluation of Effective Coverage for Optical Satellites Based on Physical and Meteorological Condition[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(7): 841-849.
[1] 贺勇军, 戴金海, 王海丽. 复杂多卫星系统有效覆盖特性的仿真分析[J]. 计算机仿真, 2003(z1):110-113. HE Yongjun, DAI Jinhai, WANG Haili. Simulation-based Effective Coverage Performance Analysis for Complex Multi-satellite systems[J]. Computer Simulation, 2003(z1):110-113. [2] 张倩, 赵砚, 徐梅. 卫星星座的空域覆盖性能计算模型[J]. 飞行器测控学报, 2011, 30(1):6-10. ZHANG Qian, ZHAO Yan, XU Mei. Computation Model of Constellation Space Coverage Performance[J]. Journal of Spacecraft TT & C Technology, 2011, 30(1):6-10. [3] 左伟, 张桂兰, 万必文, 等. 中尺度生态评价研究中格网空间尺度的选择与确定[J]. 测绘学报, 2003, 32(3):267-271. ZUO Wei, ZHANG Guilan, WAN Biwen, et al. Study of Determining the GIS Raster Size in Mid-scale Ecological Assessment Research[J]. Acta Geodaetica et Cartographica Sinica, 2003, 32(3):267-271. [4] 王沛,李菊芳,谭跃进. 多星联合对地观测能力评估系统设计与实现[J]. 军事运筹与系统工程, 2007, 21(2):68-73. WANG Pei, LI Jufang, TAN Yuejin. Design and Implementation of Multi Earth Observing Satellites Capability Evaluation System[J]. Military Operations Research and Systems Engineering, 2007, 21(2):68-73. [5] 贺勇军. 面向效能优化的复杂多卫星系统综合建模与仿真方法研究[D]. 长沙:国防科学技术大学, 2004. HE Yongjun. Research on Integrated Modeling and Simulation Methods for Effectiveness Optimization of Complex Multi-satellite Systems[D]. Changsha:National University of Defense Technology, 2004. [6] JAVANBARG B M, SCAWTHORN C,KIYONO J,et al. Fuzzy AHP-based Multicriteria Decision Making Systems Using Particle Swarm Optimization[J]. Expert Systems with Applications, 2012, 39(1):960-966. [7] ASCHBACHER J, MILAGRO-PÉREZ M P. The European Earth Monitoring (GMES) Programme:Status and Perspectives[J]. Remote Sensing of Environment, 2012, 120:3-8. [8] DRUSCH M, DEL BELLO U,CARLIER S,et al.Sentinel-2:ESA's Optical High-resolution Mission for GMES Operational Services[J]. Remote Sensing of Environment, 2012, 120:25-36. [9] MALENOVSKY' Z, ROTT H, CIHLAR J, et al. Sentinels for Science:Potential of Sentinel-1, -2, and -3 Missions for Scientific Observations of Ocean, Cryosphere, and Land[J]. Remote Sensing of Environment, 2012, 120:91-101. [10] VEEFKIND J P, ABEN I, MCMULLAN K, et al. TROPOMI on the ESA Sentinel-5 Precursor:A GMES Mission for Global Observations of the Atmospheric Composition for Climate, Air Quality and Ozone Layer Applications[J]. Remote Sensing of Environment, 2012, 120:70-83. [11] ZOOGMAN P, JACOB D J, CHANCE K, et al. Ozone Air Quality Measurement Requirements for a Geostationary Satellite Mission[J]. Atmospheric Environment, 2011, 45(39):7143-7150. [12] CASHMORE M, RICHARDSON T, HILDING-RYEDVIK T, et al. Evaluating the Effectiveness of Impact Assessment Instruments:Theorizing the Nature and Implications of Their Political Constitution[J]. Environmental Impact Assessment Review, 2010, 30(6):371-379. [13] HEINMA K, PÕDER T. Effectiveness of Environmental Impact Assessment System in Estonia[J]. Environmental Impact Assessment Review, 2010, 30(4):272-277. [14] NEPAL B, YADAV O P, MURAT A. A Fuzzy-AHP Approach to Prioritization of CS Attributes in Target Planning for Automotive Product Development[J]. Expert Systems with Applications, 2010, 37(10):6775-6786. [15] 贺东雷, 李国平, 侯宇葵. 天基对地观测系统效能评估初探[J]. 中国空间科学技术, 2014(1):18-25. HE Donglei, LI Guoping, HOU Yukui. Initial Efficiency Evaluation Approach for Space-based Earth Observation Satellites System[J]. Chinese Space Science and Technology, 2014(1):18-25. [16] 姚锋, 李菊芳, 李文, 等. 对地观测卫星动态能力评估系统[J]. 火力与指挥控制, 2010, 35(12):18-21. YAO Feng, LI Jufang, LI Wen, et al. Study on Dynamic Capability Assessment System of Earth Observation Satellites[J]. Fire Control & Command Control, 2010, 35(12):18-21. [17] 李颖, 张占月, 陈庆华. 空间对地观测系统指标体系研究[J]. 装备指挥技术学院学报, 2011, 22(5):51-54. LI Ying, ZHANG Zhanyue, CHEN Qinghua. Research on Parameters System of Space-to-earth Observation System[J]. Journal of the Academy of Equipment Command & Technology, 2011, 22(5):51-54. [18] 项磊, 孟新, 张秀成, 等. 基于HLA的对地观测卫星系统效能评估研究[J]. 计算机仿真, 2010, 27(7):28-32. XIANG Lei, MENG Xin, ZHANG Xiucheng, et al. Study on Military Satellite System Effectiveness Evaluation Based on HLA[J]. Computer Simulation, 2010, 27(7):28-32. [19] 翁慧慧. 遥感卫星对地覆盖分析与仿真[D]. 郑州:信息工程大学, 2006. WENG Huihui. Ground Coverage Analysis and Simulation of Remote Sensing Satellite[D]. Zhengzhou:Information Engineering University, 2006. [20] 韩潮, 邓丽, 徐嘉. 星座覆盖性能评估的改进网格点仿真法[J]. 计算机仿真, 2005, 22(12):21-23, 56. HAN Chao, DENG Li, XU Jia. Improved Grid Simulation for Constellation Coverage Performance Evaluation[J]. Computer Simulation, 2005, 22(12):21-23, 56. |
[1] | 程结海, 黄中意, 王建如, 何湜. 高空间分辨率遥感影像最优分割结果自动确定方法[J]. 测绘学报, 2022, 51(5): 658-667. |
[2] | 梁哲恒, 黎宵, 邓鹏, 盛森, 姜福泉. 融合多尺度特征注意力的遥感影像变化检测方法[J]. 测绘学报, 2022, 51(5): 668-676. |
[3] | 白坤, 慕晓冬, 陈雪冰, 朱永清, 尤轩昂. 融合半监督学习的无监督遥感影像场景分类[J]. 测绘学报, 2022, 51(5): 691-702. |
[4] | 黄明益, 吴军, 高炯笠. 多镜头全景摄像机球面视频无缝生成[J]. 测绘学报, 2022, 51(5): 703-717. |
[5] | 王丹菂, 邢帅, 徐青, 林雨准, 李鹏程. 单频机载激光测深海陆回波自动分类方法[J]. 测绘学报, 2022, 51(5): 750-761. |
[6] | 张志敏. 基于遥感反照率的青藏高原冰川年际物质平衡估算研究[J]. 测绘学报, 2022, 51(5): 781-781. |
[7] | 李永强, 李鹏鹏, 董亚涵, 范辉龙. 车载LiDAR点云数据中杆状地物自动提取与分类[J]. 测绘学报, 2020, 49(6): 724-735. |
[8] | 王竞雪, 刘肃艳, 王伟玺. 联合共线约束与匹配冗余的组直线匹配结果检核算法[J]. 测绘学报, 2020, 49(6): 746-756. |
[9] | 詹总谦, 胡孟琦, 满益云. 多尺度区域生长点云滤波地表拟合法[J]. 测绘学报, 2020, 49(6): 757-766. |
[10] | 韩斌, 吴一全. SAR图像河流提取的主动轮廓模型的稳健估计算法[J]. 测绘学报, 2020, 49(6): 777-786. |
[11] | 邓睿哲, 陈启浩, 陈奇, 刘修国. 遥感影像船舶检测的特征金字塔网络建模方法[J]. 测绘学报, 2020, 49(6): 787-797. |
[12] | 黄亮. 多时相遥感影像变化检测技术研究[J]. 测绘学报, 2020, 49(6): 801-801. |
[13] | 吴文豪, 张磊, 李陶, 龙四春, 段梦, 周志伟, 祝传广, 蒋廷臣. 基于几何配准的多模式SAR影像配准及其误差分析[J]. 测绘学报, 2019, 48(11): 1439-1451. |
[14] | 赵生银, 安如, 朱美如. 联合像元-深度-对象特征的遥感图像城市变化检测[J]. 测绘学报, 2019, 48(11): 1452-1463. |
[15] | 刘照欣, 赵辽英, 厉小润, 陈淑涵. 高光谱亚像元定位的线特征探测法[J]. 测绘学报, 2019, 48(11): 1464-1474. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||