测绘学报 ›› 2017, Vol. 46 ›› Issue (2): 151-156.doi: 10.11947/j.AGCS.2017.20160213

• 大地测量学与导航 • 上一篇    下一篇

合成孔径雷达高度计的波形重跟踪与仿真试验分析

翟振和1,2, 史灵卫3   

  1. 1. 地理信息工程国家重点实验室, 陕西 西安 710054;
    2. 西安测绘研究所, 陕西 西安 710054;
    3. 中国科学院国家空间科学中心, 北京 100190
  • 收稿日期:2016-03-07 修回日期:2016-11-16 出版日期:2017-02-20 发布日期:2017-03-07
  • 作者简介:翟振和(1980-),男,博士,助理研究员,研究方向为卫星测高、航空重力测量。E-mail:zhaizhenhe1980@163.com
  • 基金资助:
    国家自然科学基金(41674082)

Waveform Retracking and Emulation Experiment Analysis of Synthetic Aperture Radar Altimeter

ZHAI Zhenhe1,2, SHI Lingwei3   

  1. 1. State Key Laboratory of Geo-information Engineering, Xi'an 710054, China;
    2. Xi'an Institute of Surveying and Mapping, Xi'an 710054, China;
    3. National Space Science Center, the Chinese Academy of Sciences, Beijing 100190, China
  • Received:2016-03-07 Revised:2016-11-16 Online:2017-02-20 Published:2017-03-07
  • Supported by:
    The National Natural Science Foundation of China (No. 41674082)

摘要: 基于初步研究获得的合成孔径雷达高度计卷积模型,推导获得合成孔径雷达高度计波形关于时间偏移、合成上升时间、信号幅度3个参数偏导数的卷积计算公式,利用数值积分及傅里叶变换实现合成孔径高度计回波模型的重跟踪。在多个单位联合协同下,利用仿真轨道、对流层、电离层及潮汐等模型生成了合成孔径模式下的回波波形。对比表明,仿真生成的合成孔径模式下的回波波形与CryoSat-2卫星SAR模式下的回波波形整体形状一致。利用仿真波形数据进行重跟踪试验,结果表明在20 Hz数据条件下(约350 m分辨率),合成孔径模式下的重跟踪精度达到5 cm,较之传统模式有一定的提高。

关键词: 合成孔径雷达高度计, 波形重跟踪, 卷积计算

Abstract: Based on the synthetic aperture radar(SAR) convolution model, the convolution computation formula about the derivative of three parameters of time migration, rise time and amplitude are deduced. The SAR waveform retracking is completed using numerical integration and Fourier transform. Besides, the echo waveform under SAR model is generated using the simulation orbit, troposphere, ionosphere and tide model. The comparison shows that the shape of echo waveform under SAR model is the same as that of CryoSat-2 1 Hz SAR. The experiments show that the accuracy of SAR altimeter retracking is about 5 cm under the 20 Hz data(about 350 m resolution), which are improved compared with that of the traditional model.

Key words: synthetic aperture radar altimeter, waveform retracking, convolution computation

中图分类号: