[1] BROCKMANN J M, ZEHENTNER N, HÖCK E, et al. EGM_TIM_RL05:An Independent Geoid with Centimeter Accuracy Purely Based on the GOCE Mission[J]. Geophysical Research Letters, 2014, 41(22):8089-8099. [2] PAIL R, GOIGINGER H, SCHUH W D, et al. Combined Satellite Gravity Field Model GOCO01S Derived from GOCE and GRACE[J]. Geophysical Research Letters, 2010, 37(20):L20314. [3] FEATHERSTONE W E. GNSS-based Heighting in Australia:Current, Emerging and Future Issues[J]. Journal of Spatial Science, 2008, 53(2):115-133. [4] RUMMEL R. Height Unification Using GOCE[J]. Journal of Geodetic Science, 2012, 2(4):355-362. [5] MCKENZIE D, YI Weiyong, RUMMEL R. Estimates of Te from GOCE Data[J]. Earth and Planetary Science Letters, 2014, 399(2):116-127. [6] PAVLIS N K. Modeling and Estimation of a Low Degree Geopotential Model from Terrestrial Gravity Data[R]. Report No.386. Columbus:The Ohio State University, 1988. [7] LEMONIE F G, KENYON S C, FACTOR J K, et al. The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96[R]. Greenbelt:NASA Goddard Space Flight Center, 1998. [8] PAVLIS N K, HOLMES S A, KENYON S C, et al. The Development and Evaluation of the Earth Gravitational Model 2008(EGM2008)[J]. Journal of Geophysical Research, 2012, 117(3):205-213. [9] FÖRSTE C, BRUINSMA S L, ABRIKOSOV O, et al. EIGEN-6C4 the Latest Combined Global Gravity Field Model Including GOCE Data up to Degree and Order 2190 of GFZ Potsdam and GRGS Toulouse[EB/OL]. http://doi.org/10.5880/icgem.2015.1. [10] 李新星, 吴晓平, 李姗姗, 等. 块对角最小二乘方法在确定全球重力场模型中的应用[J]. 测绘学报, 2014, 43(8):778-785. DOI:10.13485/j.cnki.11-2089.2014.0110. LI Xinxing, WU Xiaoping, LI Shanshan, et al. The Application of Block-diagonal Least-squares Methods in Geopotential Model Determination[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(8):778-785. DOI:10.13485/j.cnki.11-2089.2014.0110. [11] GILARDONI M, REGUZZONI M, SAMPIETRO D. GECO:A Global Gravity Model by Locally Combining GOCE Data and EGM2008[J]. Studia Geophysica et Geodaetica, 2016, 60(2):228-247. [12] FECHER T, PAIL R, GRUBER T, et al. GOCO05c:A New Combined Gravity Field Model Based on Full Normal Equations and Regionally Varying Weighting[J]. Surveys in Geophysics, 2017, 38(3):571-590. [13] 王正涛, 党亚民, 晁定波. 超高阶地球重力位模型确定的理论与方法[M]. 北京:测绘出版社, 2011. WANG Zhengtao, DANG Yamin, CHAO Dingbo. Theory and Methodology of Ultra-high-degree Geopotential Model Determination[M]. Beijing:Surveying and Mapping Press, 2011. [14] 李新星. 超高阶地球重力场模型的构建[D]. 郑州:信息工程大学, 2013. LI Xinxing. Building of an Ultra-high-degree Geopotential Model[D]. Zhengzhou:Information Engineering University, 2013. [15] 海斯卡涅W A, 莫里兹H. 物理大地测量学[M]. 卢福康, 胡国理, 译. 北京:测绘出版社, 1979. HEISKANEN W A, MORITZ H. Physical Geodesy[M]. LU Fukang, HU Guoli, trans. Beijing:Surveying and Mapping Press, 1979. [16] COLOMBO O L. Numerical Methods for Harmonic Analysis on the Sphere[R]. Columbus:The Ohio State University, 1981. [17] LIANG Wei, LI Jiancheng, XU Xinyu, et al. Analysis of the Impact on the Gravity Field Determination from the Data with the Ununiform Noise Distribution Using Block-diagonal Least Squares Method[J]. Geodesy and Geodynamics, 2016, 7(3):194-201. [18] XU Xinyu, ZHAO Yongqi, REUBELT T, et al. A GOCE Only Gravity Model GOSG01S and the Validation of GOCE Related Satellite Gravity Models[J]. Geodesy and Geodynamics, 2017, 8(4):260-272. [19] 钟波, 宁津生, 罗志才, 等. 联合GOCE卫星轨道和重力梯度数据严密求解重力场的模拟研究[J]. 武汉大学学报(信息科学版), 2012, 37(10):1215-1220. ZHONG Bo, NING Jinsheng, LUO Zhicai, et al. Simulation Study of Rigorous Gravity Field Recovery by Combining GOCE Satellite Orbit and Gravity Gradient Data[J]. Geomatics and Information Science of Wuhan University, 2012, 37(10):1215-1220. [20] 陈国良. 并行计算:结构·算法·编程[M]. 3版. 北京:高等教育出版社, 2011. CHEN Guoliang. Parallel Computing:Architecture, Algorithm and Programming[M]. 3rd ed. Beijing:Higher Education Press, 2011. [21] 邹贤才, 李建成, 汪海洪, 等. OpenMP并行计算在卫星重力数据处理中的应用[J]. 测绘学报, 2010, 39(6):636-641. ZOU Xiancai, LI Jiancheng, WANG Haihong, et al. Application of Parallel Computing with OpenMP in Data Processing for Satellite Gravity[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(6):636-641. [22] FÖERSTE C, BRUINSMA S L, FLECHTNER F, et al. A Preliminary Update of the Direct Approach GOCE Processing and a New Release of EIGEN-6C[C]//Proceedings of American Geophysical Union 2012 Fall Meeting. San Francisco, USA:American Geophysical Union, 2012. [23] LI Jiancheng, JIANG Weiping, ZOU Xiancai, et al. Evaluation of Recent GRACE and GOCE Satellite Gravity Models and Combined Models Using GPS/leveling and Gravity Data in China[M]//MARTI U. Gravity, Geoid and Height Systems. Cham, Switzerland:Springer, 2014:67-74. [24] MILBERT D G. Documentation for the GPS Benchmark Data Set of 23-July-98[R]. Milan:IGeS International Geoid Service, 1998:29-42. [25] RUMMEL R, YI Weiyong, STUMMER C. GOCE Gravitational Gradiometry[J]. Journal of Geodesy, 2011, 85(11):777-790. |