测绘学报 ›› 2019, Vol. 48 ›› Issue (1): 64-74.doi: 10.11947/j.AGCS.2019.20170585
林文杰, 李玉, 赵泉华
收稿日期:
2017-10-16
修回日期:
2018-05-04
出版日期:
2019-01-20
发布日期:
2019-01-31
通讯作者:
李玉
E-mail:liyu@lntu.edu.cn
作者简介:
林文杰(1989-),男,博士生,研究方向为海量遥感数据处理。E-mail:463825160@qq.com
基金资助:
国家自然科学基金(41271435);国家自然科学基金青年科学基金(41301479)
LIN Wenjie, LI Yu, ZHAO Quanhua
Received:
2017-10-16
Revised:
2018-05-04
Online:
2019-01-20
Published:
2019-01-31
Supported by:
The Nation Natural Science Foundation of China (No. 41271435);The National Natural Science Foundation for Young Scientists of China (No. 41301479)
摘要:
针对基于像素的HMRF-FCM算法抗噪性差以及对地物复杂边界分割精度低的问题,提出一种结合形状信息的静态MST区域划分和RHMRF-FCM算法的高分辨率遥感图像分割方法。该方法定义一种静态MST同质区域划分准则,借助MST能较好表达边界和形状信息、能较好抑制几何噪声的特点,解决地物复杂边界的表达和降低分割结果中几何噪声问题。首先,利用MST静态划分将图像域划分成若干个均质区域,假设每个均质区域内光谱测度服从独立同一的多元高斯分布。然后,在此基础上构建了区域隐马尔可夫随机场模型,以及建立基于信息熵和KL信息正则化项的模糊聚类目标函数。最后,采用偏微分方法对分割模型参数进行求解,从而得到全局最优分割结果。为验证本文方法,对WorldView-3高分遥感图像进行分割试验。定性、定量分析了尺度参数、光谱相似性参数和区域紧致度参数对最优分割结果的影响,并对比分析本文算法和eCognition软件中的多分辨率分割算法、分水岭算法。
中图分类号:
林文杰, 李玉, 赵泉华. 结合MST划分和RHMRF-FCM算法的高分辨率遥感图像分割[J]. 测绘学报, 2019, 48(1): 64-74.
LIN Wenjie, LI Yu, ZHAO Quanhua. High-resolution remote sensing image segmentation using minimum spanning tree tessellation and RHMRF-FCM algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1): 64-74.
[1] LI Yu. Remotely sensed data segmentation under a spatial statistics framework[D]. Waterloo:University of Waterloo, 2010. [2] 李德仁, 童庆禧, 李荣兴, 等. 高分辨率对地观测的若干前沿科学问题[J]. 中国科学(地球科学), 2012, 42(6):805-813. LI Deren, TONG Qingxi, LI Rongxing, et al. Current issues in high-resolution Earth observation technology[J]. Science China:Earth Sciences, 2012, 42(6):805-813. [3] 洪亮. 基于对象马尔可夫模型的高分辨率遥感影像分割方法研究[D]. 武汉:武汉大学, 2010. HONG Liang. Research on the segmentation of high resolution remote sensing image based on object-oriented Markovian random fields model[D]. Wuhan:Wuhan University, 2010. [4] ASKARI G, XU Aigong, LI Yu, et al. Automatic determination of number of homogenous regions in SAR images utilizing splitting and merging based on a reversible jump MCMC algorithm[J]. Journal of the Indian Society of Remote Sensing, 2013, 41(3):509-521. [5] 王玉, 李玉, 赵泉华. 结合规则划分和M-H算法的SAR图像分割[J]. 武汉大学学报(信息科学版), 2016, 41(11):1491-1497. WANG Yu, LI Yu, ZHAO Quanhua. SAR image segmentation combined regular tessellation and M-H algorithm[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11):1491-1497. [6] 赵泉华, 李晓丽, 赵雪梅, 等. 结合Voronoi划分HMRF模型的模糊ISODATA图像分割[J]. 信号处理, 2016, 32(10):1233-1243. ZHAO Quanhua, LI Xiaoli, ZHAO Xuemei, et al. Fuzzy ISODATA image segmentation integrating Voronoi tessellation HMRF Model[J]. Journal of Signal Processing, 2016, 32(10):1233-1243. [7] WANG Ping, WEI Zheng, CUI Weihong, et al. A minimum spanning tree based method for UAV image segmentation[C]//ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. Prague:[s.n.], 2016:111-117. [8] 黎莹, 戴芳, 郝勇, 等. 基于最小生成树的图像分割[J]. 计算机工程与应用, 2013, 49(13):149-151. LI Ying, DAI Fang, HAO Yong, et al. Image segmentation based on minimum spanning tree[J]. Computer Engineering and Applications, 2013, 49(13):149-151. [9] PENG Bo, ZHANG Lei, ZHANG D. A survey of graph theoretical approaches to image segmentation[J]. Pattern Recognition, 2013, 46(3):1020-1038. [10] 巫兆聪, 胡忠文, 张谦, 等. 结合光谱、纹理与形状结构信息的遥感影像分割方法[J]. 测绘学报, 2013, 42(1):44-50. WU Zhaocong, HU Zhongwen, ZHANG Qian, et al. On combining spectral, textural and shape features for remote sensing image segmentation[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(1):44-50. [11] 李慧, 唐韵玮, 刘庆杰, 等. 一种改进的基于最小生成树的遥感影像多尺度分割方法[J]. 测绘学报, 2015, 44(7):791-796. DOI:10.11947/j.AGCS.2015.20140060. LI Hui, TANG Yunwei, LIU Qingjie, et al. An improved algorithm based on minimum spanning tree for multi-scale segmentation of remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(7):791-796. DOI:10.11947/j.AGCS.2015.20140060. [12] ZAHN C T. Graph-theoretical methods for detecting and describing gestalt clusters[J]. IEEE Transactions on Computers, 1971, C-20(1):68-86. [13] 王平, 魏征, 崔卫红, 等. 一种基于统计学习理论的最小生成树图像分割准则[J]. 武汉大学学报(信息科学版), 2017, 42(7):877-883. WANG Ping, WEI Zheng, CUI Weihong, et al. An image segmentation method based on statistics learning theory and minimum spanning tree[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7):877-882. [14] FELZENSZWALB P F, HUTTENLOCHER D P. Efficient graph-based image segmentation[J]. International Journal of Computer Vision, 2004, 59(2):167-181. [15] 赵雪梅, 李玉, 赵泉华. 结合高斯回归模型和隐马尔可夫随机场的模糊聚类图像分割[J]. 电子与信息学报, 2014, 36(11):2730-2736. ZHAO Xuemei, LI Yu, ZHAO Quanhua. Image segmentation by fuzzy clustering algorithm combining hidden Markov random field and Gaussian regression model[J]. Journal of Electronics & Information Technology, 2014, 36(11):2730-2736. [16] 赵泉华, 李晓丽, 赵雪梅, 等. 结合马氏距离的区域化模糊聚类遥感图像分割[J]. 中国矿业大学学报, 2017, 46(1):222-228. ZHAO Quanhua, LI Xiaoli, ZHAO Xuemei, et al. Remote sensing image segmentation algorithm with regional fuzzy cluster and Mahalanobis distance[J]. Journal of China University of Mining & Technology, 2017, 46(1):222-228. [17] LUCARINI V. Symmetry-break in Voronoi tessellations[J]. Symmetry, 2009, 1(1):21-54. [18] SCHNEIDER R. Weighted faces of Poisson hyperplane tessellations[J]. Advances in Applied Probability, 2009, 41(3):682-694. [19] ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2274-2282. [20] BANERJEE B, VARMA S, BUDDHIRAJU K M, et al. Unsupervised multi-spectral satellite image segmentation combining modified mean-shift and a new minimum spanning tree based clustering technique[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(3):888-894. [21] CUI Weihong, ZHANG Yi. An effective graph-based hierarchy image segmentation[J]. Intelligent Automation & Soft Computing, 2011, 17(7):969-981. [22] NARAYAN D, MURTHY S, KUMAR G H. Image segmentation based on graph theoretical approach to improve the quality of image segmentation[J]. Proceedings of World Academy of Science, Engineering and Technology, 2008,18(1):35-38. [23] 杨佳学. 大规模图上的最小生成树并行算法研究[D]. 沈阳:东北大学, 2013. YANG Jiaxue. Research on the parallel algorithm of the minimum spanning tree on large scale graphs[D]. Shenyang:Northeastern University, 2013. [24] CHATZIS S P, VARVARIGOU T A. A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially constrained image segmentation[J]. IEEE Transactions on Fuzzy Systems, 2008, 16(5):1351-1361. [25] CONGALTON R G, GREEN K. Assessing the accuracy of remotely sensed data:principles and practices[M]. Boca Raton:CRC Press, 2008:169-190. |
[1] | 程结海, 黄中意, 王建如, 何湜. 高空间分辨率遥感影像最优分割结果自动确定方法[J]. 测绘学报, 2022, 51(5): 658-667. |
[2] | 梁哲恒, 黎宵, 邓鹏, 盛森, 姜福泉. 融合多尺度特征注意力的遥感影像变化检测方法[J]. 测绘学报, 2022, 51(5): 668-676. |
[3] | 白坤, 慕晓冬, 陈雪冰, 朱永清, 尤轩昂. 融合半监督学习的无监督遥感影像场景分类[J]. 测绘学报, 2022, 51(5): 691-702. |
[4] | 黄明益, 吴军, 高炯笠. 多镜头全景摄像机球面视频无缝生成[J]. 测绘学报, 2022, 51(5): 703-717. |
[5] | 王丹菂, 邢帅, 徐青, 林雨准, 李鹏程. 单频机载激光测深海陆回波自动分类方法[J]. 测绘学报, 2022, 51(5): 750-761. |
[6] | 张志敏. 基于遥感反照率的青藏高原冰川年际物质平衡估算研究[J]. 测绘学报, 2022, 51(5): 781-781. |
[7] | 李永强, 李鹏鹏, 董亚涵, 范辉龙. 车载LiDAR点云数据中杆状地物自动提取与分类[J]. 测绘学报, 2020, 49(6): 724-735. |
[8] | 王竞雪, 刘肃艳, 王伟玺. 联合共线约束与匹配冗余的组直线匹配结果检核算法[J]. 测绘学报, 2020, 49(6): 746-756. |
[9] | 詹总谦, 胡孟琦, 满益云. 多尺度区域生长点云滤波地表拟合法[J]. 测绘学报, 2020, 49(6): 757-766. |
[10] | 韩斌, 吴一全. SAR图像河流提取的主动轮廓模型的稳健估计算法[J]. 测绘学报, 2020, 49(6): 777-786. |
[11] | 邓睿哲, 陈启浩, 陈奇, 刘修国. 遥感影像船舶检测的特征金字塔网络建模方法[J]. 测绘学报, 2020, 49(6): 787-797. |
[12] | 黄亮. 多时相遥感影像变化检测技术研究[J]. 测绘学报, 2020, 49(6): 801-801. |
[13] | 吴文豪, 张磊, 李陶, 龙四春, 段梦, 周志伟, 祝传广, 蒋廷臣. 基于几何配准的多模式SAR影像配准及其误差分析[J]. 测绘学报, 2019, 48(11): 1439-1451. |
[14] | 赵生银, 安如, 朱美如. 联合像元-深度-对象特征的遥感图像城市变化检测[J]. 测绘学报, 2019, 48(11): 1452-1463. |
[15] | 刘照欣, 赵辽英, 厉小润, 陈淑涵. 高光谱亚像元定位的线特征探测法[J]. 测绘学报, 2019, 48(11): 1464-1474. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||