测绘学报 ›› 2019, Vol. 48 ›› Issue (11): 1380-1390.doi: 10.11947/j.AGCS.2019.20180538

• 地图学与地理信息 • 上一篇    下一篇

ST-CFSFDP:快速搜索密度峰值的时空聚类算法

王培晓1,3, 张恒才2,3, 王海波4, 吴升1,3   

  1. 1. 福州大学数字中国研究院(福建), 福建 福州 350002;
    2. 中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室, 北京 100101;
    3. 海西政务大数据应用协同创新中心, 福建 福州 350002;
    4. 湖北工业大学经济与管理学院, 湖北 武汉 430068
  • 收稿日期:2018-11-23 修回日期:2019-04-08 出版日期:2019-11-20 发布日期:2019-11-19
  • 通讯作者: 吴升 E-mail:ws0110@163.com
  • 作者简介:王培晓(1994-),男,硕士生,研究方向为地理信息服务、时空数据挖掘。E-mail:peixiao_wang@163.com
  • 基金资助:
    国家重点研发计划(2017YFB0503500);数字福建建设项目(闽发改网数字函[2016]23号);国家自然科学基金(41771436)

Spatial-temporal clustering by fast search and find of density peaks

WANG Peixiao1,3, ZHANG Hengcai2,3, WANG Haibo4, WU Sheng1,3   

  1. 1. The Academy of Digital China, Fuzhou University, Fuzhou 350002, China;
    2. State Key Lab of Resources and Environmental Information System, IGSNRR, CAS, Beijing 100101, China;
    3. Fujian Collaborative Innovation Center for Big Data Applications in Governments, Fuzhou 350002, China;
    4. Economic and management school, Hubei University of Technology, Wuhan 430068, China
  • Received:2018-11-23 Revised:2019-04-08 Online:2019-11-20 Published:2019-11-19
  • Supported by:
    The National Key Research and Development Program of China(No. 2017YFB0503500);The Digital Fujian Program(No. 2016-23);The National Natural Science Foundation of China(No. 41771436)

摘要: 时空聚类算法是地理时空大数据挖掘的基础研究命题。针对传统CFSFDP聚类算法无法应用于时空数据挖掘的问题,本文提出一种时空约束的ST-CFSFDP(spatial-temporal clustering by fast search and find of density peaks)算法。在CFSFDP算法基础上加入时间约束,修改了样本属性值的计算策略,不仅解决了原算法单簇集多密度峰值问题,且可以区分并识别相同位置不同时间的簇集。本文利用模拟时空数据与真实的室内定位轨迹数据进行对比试验。结果表明,该算法在时间阈值90 s、距离阈值5 m的识别正确率高达82.4%,较经典ST-DBCSAN、ST-OPTICS及ST-AGNES聚类算法准确率分别提高了5.2%、4.2%和7.6%。

关键词: 地理时空大数据挖掘, CFSFDP算法, ST-CFSFDP算法, 时空聚类算法

Abstract: Spatial-temporal clustering algorithm is the basic research topic of geographic spatial-temporal big data mining. In view of the problem that traditional CFSFDP clustering algorithm cannot be applied in spatio-temporal data mining, this paper proposes a spatio-temporal constraint algorithm called ST-CFSFDP(spatial-temporal clustering by fast search and find of density peaks). ST-CFSFDP adds time constraint on the basis of CFSFDP algorithm, and modifies the calculation strategy of sample attribute value, which not only solves the problem of multi-density peak of single cluster set in the original algorithm, but also can distinguish and identify clusters at the same location and at different times. In this paper, the simulated spatiotemporal data and real indoor location trajectory data were used for the experiment, the results show that the ST-CFSFDP algorithm has a recognition rate of 82.4% at a time threshold of 90 s and a distance threshold of 5 m,which is better than the classic ST-DBCSAN, ST-OPTICS and ST-AGNES algorithm increased by 5.2%, 4.2%, and 7.6%, respectively.

Key words: geospatial-temporal big data mining, CFSFDP algorithm, ST-CFSFDP algorithm, spatio-temporal clustering

中图分类号: