测绘学报 ›› 2019, Vol. 48 ›› Issue (11): 1380-1390.doi: 10.11947/j.AGCS.2019.20180538
王培晓1,3, 张恒才2,3, 王海波4, 吴升1,3
收稿日期:
2018-11-23
修回日期:
2019-04-08
出版日期:
2019-11-20
发布日期:
2019-11-19
通讯作者:
吴升
E-mail:ws0110@163.com
作者简介:
王培晓(1994-),男,硕士生,研究方向为地理信息服务、时空数据挖掘。E-mail:peixiao_wang@163.com
基金资助:
WANG Peixiao1,3, ZHANG Hengcai2,3, WANG Haibo4, WU Sheng1,3
Received:
2018-11-23
Revised:
2019-04-08
Online:
2019-11-20
Published:
2019-11-19
Supported by:
摘要: 时空聚类算法是地理时空大数据挖掘的基础研究命题。针对传统CFSFDP聚类算法无法应用于时空数据挖掘的问题,本文提出一种时空约束的ST-CFSFDP(spatial-temporal clustering by fast search and find of density peaks)算法。在CFSFDP算法基础上加入时间约束,修改了样本属性值的计算策略,不仅解决了原算法单簇集多密度峰值问题,且可以区分并识别相同位置不同时间的簇集。本文利用模拟时空数据与真实的室内定位轨迹数据进行对比试验。结果表明,该算法在时间阈值90 s、距离阈值5 m的识别正确率高达82.4%,较经典ST-DBCSAN、ST-OPTICS及ST-AGNES聚类算法准确率分别提高了5.2%、4.2%和7.6%。
中图分类号:
王培晓, 张恒才, 王海波, 吴升. ST-CFSFDP:快速搜索密度峰值的时空聚类算法[J]. 测绘学报, 2019, 48(11): 1380-1390.
WANG Peixiao, ZHANG Hengcai, WANG Haibo, WU Sheng. Spatial-temporal clustering by fast search and find of density peaks[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1380-1390.
[1] | LIU Hongzhi, WU Zhonghai, ZHANG Xing. CPLR:Collaborative pairwise learning to rank for personalized recommendation[J]. Knowledge-Based Systems, 2018, 148(5):31-40. |
[2] | ZHOU Yuwem, HUANG Changqin, HU Qintai, et al. Personalized learning full-path recommendation model based on LSTM neural networks[J]. Information Sciences, 2018, 444(5):135-152. |
[3] | XUE Hao, HUYNH D Q, REYNOLDS M. SS-LSTM:ahierarchical LSTM model for pedestrian trajectory prediction[C]//Proceedings of 2018 IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe, NV:IEEE, 2018. |
[4] | MENG Fanrong, YUAN Guan, LÜ Shaoqian, et al. An overview on trajectory outlier detection[J]. Artificial Intelligence Review, 2018(10):1-20. |
[5] | 李志林, 刘启亮, 唐建波. 尺度驱动的空间聚类理论[J]. 测绘学报, 2017, 46(10):1534-1548. DOI:10.11947/j.AGCS.2017.20170275. LI Zhilin, LIU Qiliang, TANG Jianbo. Towardsa scale-driven theoryfor spatialclustering[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1534-1548. DOI:10.11947/j.AGCS.2017.20170275. |
[6] | 刘启亮, 邓敏, 石岩, 等. 一种基于多约束的空间聚类方法[J]. 测绘学报, 2011, 40(4):509-516. LIU Qiliang, DENG Min, SHI Yan, et al. A novel spatial clustering method based on multi-constraints[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(4):509-516. |
[7] | 牟乃夏, 徐玉静, 张恒才, 等. 移动轨迹聚类方法研究综述[J]. 测绘通报, 2018(1):1-7. DOI:10.13474/j.cnki.11-2246.2018.0001. MOU Naixia, XU Yujing, ZHANG Hengcai, et al. A review of the mobile trajectory clustering methods[J]. Bulletin of Surveying and Mapping, 2018(1):1-7. DOI:10.13474/j.cnki.11-2246.2018.0001. |
[8] | 牟乃夏, 张恒才, 陈洁, 等. 轨迹数据挖掘城市应用研究综述[J]. 地球信息科学学报, 2015, 17(10):1136-1142. MOU Naixia, ZHANG Hengcai, CHEN Jie, et al. A review on the application research of trajectory data mining in urban cities[J]. Journal of Geo-information Science, 2015, 17(10):1136-1142. |
[9] | KALANTARI M, YAGHMAEI B, GHEZELBASH S. Spatio-temporal analysis of crime by developing a method to detect critical distances for the Knox test[J]. International Journal of Geographical Information Science, 2016, 30(11):2302-2320. |
[10] | ZALIAPIN I, GABRIELOV A, KEILIS-BOROK V, et al. Clustering analysis of seismicity and aftershock identification[J]. Physical Review Letters, 2008, 101(1):018501. |
[11] | WANG Jiao, CHENG Weiming, ZHOU Chenghu, et al. Automatic mapping of lunar landforms using DEM-derived geomorphometric parameters[J]. Journal of Geographical Sciences, 2017, 27(11):1413-1427. |
[12] | ZHAO Quanhua, LI Xiaoli, LI Yu, et al. A fuzzy clustering image segmentation algorithm based on hidden Markov random field models and Voronoi tessellation[J]. Pattern Recognition Letters, 2017, 85(2):49-55. |
[13] | ACEDO-HERNÁNDEZ R, TORIL M, LUNA-RAMÍREZ S, et al. Automatic clustering algorithms for indoor site selection in LTE[J]. EURASIP Journal on Wireless Communications and Networking, 2016(12):87-98. |
[14] | 姜波, 叶灵耀, 潘伟丰, 等. 基于需求功能语义的服务聚类方法[J]. 计算机学报, 2018, 41(6):1255-1266. JIANG Bo, YE Lingyao, PAN Weifeng, et al. Service clustering based on the functional semantics of requirements[J]. Chinese Journal of Computers, 2018, 41(6):1255-1266. |
[15] | 林楠, 尹凌, 赵志远. 基于滑动窗口的手机定位数据个体停留区域识别算法[J]. 地球信息科学学报, 2018, 20(6):762-771. LIN Nan, YIN Ling, ZHAO Zhiyuan. Detecting individual stay areas from mobile phone location data based on moving windows[J]. Journal of Geo-information Science, 2018, 20(6):762-771. |
[16] | 周世波, 徐维祥. 密度峰值快速搜索与聚类算法及其在船舶位置数据分析中的应用[J]. 仪器仪表学报, 2018, 39(7):152-163. ZHOU Shibo, XU Weixiang. Clustering by fast search and find of density peaks andits application in ship location data analysis[J]. Chinese Journal of Scientific Instrument, 2018, 39(7):152-163. |
[17] | MACQUEEN J. Some methods for Classification and analysis of multivariate observations[C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability.Berkeley, Calif.:University of California Press, 1967:281-297. |
[18] | PARK H S, JUN C H. A simple and fast algorithm for K-medoids clustering[J]. Expert Systems with Applications, 2009, 36(2):3336-3341. |
[19] | 王寅同,王建东,陈海燕,等.一种代表点的近似折半层次聚类算法[J].小型微型计算机系统,2015, 36(2):215-219. WANG Yintong, WANG Jiandong, CHEN Haiyan, et al.An algorithm for approximate binary hierarchical clustering using representatives[J]. Journal of Chinese Computer Systems, 2015, 36(2):215-219. |
[20] | ESTIVILL-CASTRO V, LEE I. Multi-level clustering and its visualization for exploratory spatial analysis[J]. Geoinformatica, 2002, 6(2):123-152. |
[21] | HANRAHANP, SALZMAN D, AUPPERLE L. A rapid hierarchical radiosity algorithm[C]//Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques.New York, NY:ACM, 1991:197-206. |
[22] | ESTER M, KRIEGEL H P, SANDERJ, et al. A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland, Oregon:AAAI Press, 1996:226-231. |
[23] | 唐建波, 邓敏, 刘启亮. 时空事件聚类分析方法研究[J]. 地理信息世界, 2013, 20(1):38-45. TANG Jianbo, DENG Min, LIU Qiliang. On spatio-temporal events clustering methods[J]. Geomatics World, 2013, 20(1):38-45. |
[24] | ANKERST M, BREUNIG M M, KRIEGEL H P, et al. OPTICS:ordering points to identify the clustering structure[C]//Proceedings of ACM-SIGMOD International Conference on Management of Data. Philadelphia PA:ACM, 1999. |
[25] | WANG Wei, YANG Jiong, MUNTZ R R. STING:a statistical information grid approach to spatial data mining[C]//Proceedings of the 23rd International Conference on Very Large Data Bases. San Francisco, CA:Morgan Kaufmann Publishers Inc., 1997:186-195. |
[26] | BIRANTD, KUT A. ST-DBSCAN:an algorithm for clustering spatial-temporal data[J]. Data & Knowledge Engineering, 2007, 60(1):208-221. |
[27] | AGRAWAL K P, GARG S, SHARMA S, et al. Development and validation of OPTICS based spatio-temporal clustering technique[J]. Information Sciences, 2016, 369:388-401. |
[28] | BAIESI M, PACZUSKI M. Scale-free networks of earthquakes and aftershocks[J]. Physical Review E, 2004, 69(6):066106. |
[29] | KULLDORFF M, HEFFERNAN R, HARTMAN J, et al. A space-time permutation scan statistic for disease outbreak detection[J]. PLoS Medicine, 2005, 2(3):e59. |
[30] | GAUDART J, POUDIOUGOU B, DICKO A, et al. Space-time clustering of childhood malaria at the household level:a dynamic cohort in a Mali village[J]. BMC Public Health, 2006(6):286-298. |
[31] | LIU Qiliang, DENG Min, BI Jiantao, et al. A novel method for discovering spatio-temporal clusters of different sizes, shapes, and densities in the presence of noise[J]. International Journal of Digital Earth, 2014, 7(2):138-157. |
[32] | PEI Tao, ZHOU Chenghu, ZHU A'xing, et al. Windowed nearest neighbour method for mining spatio-temporal clusters in the presence of noise[J]. International Journal of Geographical Information Science, 2010, 24(6):925-948. |
[33] | LEIVA L A, VIDAL E. Warped k-means:an algorithm to cluster sequentially-distributed data[J]. Information Sciences, 2013(237):196-210. |
[34] | 王培晓, 王海波, 傅梦颖, 等. 室内用户语义位置预测研究[J]. 地球信息科学学报, 2018, 20(12):1689-1698. WANG Peixiao, WANG Haibo, FU Mengying, et al. Research on semantic location prediction of indoor users[J]. Journal of Geo-information Science, 2018, 20(12):1689-1698. |
[35] | RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191):1492-1496. |
[36] | LI Quannan, ZHENG Yu, XIE Xing, et al. Mining user similarity based on location history[C]//Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Irvine, California:ACM, 2008:34. |
[1] | 刘经南, 罗亚荣, 郭迟, 高柯夫. PNT智能与智能PNT[J]. 测绘学报, 2022, 51(6): 811-828. |
[2] | 韩李涛, 周丽娟, 龚城, 张爱国. 顾及步行习惯的室内导航网络及其生成算法[J]. 测绘学报, 2022, 51(5): 729-738. |
[3] | 方金凤, 孟祥福. 基于LBSN和多图融合的兴趣点推荐[J]. 测绘学报, 2022, 51(5): 739-749. |
[4] | 张睿卓. 基于多源数据的林区电力走廊安全风险评估方法[J]. 测绘学报, 2022, 51(5): 784-784. |
[5] | 夏吉喆, 周颖, 李珍, 李帆, 乐阳, 程涛, 李清泉. 城市时空大数据驱动的新型冠状病毒传播风险评估——以粤港澳大湾区为例[J]. 测绘学报, 2020, 49(6): 671-680. |
[6] | 朱庆, 冯斌, 李茂粟, 陈媚特, 徐肇文, 谢潇, 张叶廷, 刘铭崴, 黄志勤, 冯义从. 面向动态关联数据的高效稀疏图索引方法[J]. 测绘学报, 2020, 49(6): 681-691. |
[7] | 陆川伟, 孙群, 陈冰, 温伯威, 赵云鹏, 徐立. 车辆轨迹数据的道路学习提取法[J]. 测绘学报, 2020, 49(6): 692-702. |
[8] | 尹烁, 闫小明, 晏雄锋. 基于特征边重构的建筑物化简方法[J]. 测绘学报, 2020, 49(6): 703-710. |
[9] | 吴华意, 黄蕊, 游兰, 向隆刚. 出租车轨迹数据挖掘进展[J]. 测绘学报, 2019, 48(11): 1341-1356. |
[10] | 郭庆胜, 刘洋, 李萌, 程晓茜, 何捷, 王慧慧, 魏智威. 基于网格模型的导航道路图渐进式化简方法[J]. 测绘学报, 2019, 48(11): 1357-1368. |
[11] | 吴政, 武鹏达, 李成名. 对等网络下自适应层级的矢量数据时空索引构建方法[J]. 测绘学报, 2019, 48(11): 1369-1379. |
[12] | 万子健, 李连营, 杨敏, 周校东. 车辆轨迹数据提取道路交叉口特征的决策树模型[J]. 测绘学报, 2019, 48(11): 1391-1403. |
[13] | 胡光辉, 熊礼阳, 汤国安. DEM地表坡向变率的向量几何计算法[J]. 测绘学报, 2019, 48(11): 1404-1414. |
[14] | 张旭, 郝向阳, 李建胜, 李朋月. 监控视频中动态目标与地理空间信息的融合与可视化方法[J]. 测绘学报, 2019, 48(11): 1415-1423. |
[15] | 邓晨, 游雄, 张威巍, 智梅霞. 基于2D地图的城市户外ARGIS视觉辅助地理配准技术[J]. 测绘学报, 2019, 48(10): 1305-1319. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||