[1] WATANABE S I, ISHIKAWA T, YOKOTA Y. Non-volcanic crustal movements of the northernmost Philippine Sea plate detected by the GPS-acoustic seafloor positioning[J]. Earth, Planets and Space, 2015(67):184. [2] 兰华林, 孙大军, 张殿伦, 等. 海底应答器绝对位置快速校准[J]. 计算机工程与应用, 2007, 43(22):191-193. LAN Hualin, SUN Dajun, ZHANG Dianlun, et al. Rapid calibration of absolute position of transponder on seabed[J]. Computer Engineering and Applications, 2007, 43(22):191-193. [3] BIANCO M, GERSTOFT P. Dictionary learning of sound speed profiles[J]. The Journal of the Acoustical Society of America, 2017, 141(3):1749-1758. [4] 张忠兵, 马远良, 倪晋平, 等. 基于声线到达时差的浅海声速剖面反演[J]. 西北工业大学学报, 2002, 20(1):36-39. ZHANG Zhongbing, MA Yuanliang, NI Jinping, et al. A new and practical method for inverting sound speed profile in shallow water[J]. Journal of Northwestern Polytechnical University, 2002, 20(1):36-39. [5] 张维, 杨士莪, 黄益旺, 等. 基于爆炸声传播时间的声速剖面反演[J]. 振动与冲击, 2012, 31(23):6-11. ZHANG Wei, YANG Shi'e, HUANG Yiwang, et al. Inversion of sound speed profile based on explosive sound transmission time[J]. Journal of Vibration and Shock, 2012, 31(23):6-11. [6] 胡合欢, 崔永胜, 周进忠, 等. BP神经网络在构建声速场中的应用研究[J]. 海洋测绘, 2015, 35(5):67-70. HU Hehuan, CUI Yongsheng, ZHOU Jinzhong, et al. Application of back-propagation neural network in establishing velocity fields[J]. Hydrographic Surveying and Charting, 2015, 35(5):67-70. [7] 李洪超, 文汉江, 蔡艳辉, 等. 基于Argo浮标和EOF建立区域海水三维声速场的方法[J]. 测绘科学, 2012, 37(2):74-76. LI Hongchao, WEN Hanjiang, CAI Yanhui, et al. Modeling three-dimensional acoustic field in the ocean by using Argo and EOF[J]. Science of Surveying and Mapping, 2012, 37(2):74-76. [8] 吴永亭. LBL精密定位理论方法研究及软件系统研制[D]. 武汉:武汉大学, 2013. WU Yongting. Study on theory and method of precise LBL positioning and development of positioning software system[D]. Wuhan:Wuhan University, 2013. [9] 赵建虎. 现代海洋测绘[M]. 武汉:武汉大学出版社, 2008. ZHAO Jianhu. Modern marine surveying and charting[M]. Wuhan:Wuhan University Press, 2008. [10] ZHAO Jianhu, CHEN Xinhua, ZHANG Hongmei, et al. Localization of an underwater control network based on quasi-stable adjustment[J]. Sensors, 2018, 18(4):950. [11] ZHAO Jianhu, ZOU Yajing, ZHANG Hongmei, et al. A new method for absolute datum transfer in seafloor control network measurement[J]. Journal of Marine Science and Technology, 2016, 21(2):216-226. [12] 赵建虎, 陈鑫华, 吴永亭, 等. 顾及波浪影响和深度约束的水下控制网点绝对坐标的精确确定[J]. 测绘学报, 2018, 47(3):413-421. DOI:10.11947/j.AGCS.2018.20170246. ZHAO Jianhu, CHEN Xinhua, WU Yongting, et al. Determination of absolute coordinate of underwater control point taking waves and depth's constraint into account[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(3):413-421. DOI:10.11947/j.AGCS.2018.20170246. [13] 赵建虎, 邹亚靖, 吴永亭, 等. 深度约束的海底控制网点坐标确定方法[J]. 哈尔滨工业大学学报, 2016, 48(10):137-141. ZHAO Jianhu, ZOU Yajing, WU Yongting, et al. Determination of underwater control point coordinate based on constraint of water depth[J]. Journal of Harbin Institute of Technology, 2016, 48(10):137-141. [14] 任国晶. 深度传感器的研制与实验[D]. 哈尔滨:哈尔滨工业大学, 2012. REN Guojing. Research and experiment of the depth sensor[D]. Harbin:Harbin Institute of Technology, 2012. [15] CHEN H H, WANG C C. Optimal localization of a seafloor transponder in shallow water using acoustic ranging and GPS observations[J]. Ocean Engineering, 2007, 34(17-18):2385-2399. [16] XU Peiliang, ANDO M, TADOKORO K. Precise, three-dimensional seafloor geodetic deformation measurements using difference techniques[J]. Earth, Planets and Space, 2005, 57(9):795-808. [17] 王权, 程鹏飞, 章传银, 等. 差分GPS水下立体定位系统[J]. 测绘科学, 2006, 31(5):18-19, 21. WANG Quan, CHENG Pengfei, ZHANG Chuanyin, et al. Underwater positioning system Based on DGPS[J]. Science of Surveying and Mapping, 2006, 31(5):18-19, 21. [18] 蔡艳辉. 差分GPS水下定位系统集成关键技术研究[D]. 阜新:辽宁工程技术大学, 2007. CAI Yanhui. Investigations on integration of underwater GPS positioning system[D]. Fuxin:Liaoning Technical University, 2007. |