测绘学报 ›› 2019, Vol. 48 ›› Issue (12): 1624-1635.doi: 10.11947/j.AGCS.2019.20190456
沈焕锋1,2, 李同文1
收稿日期:
2019-11-04
修回日期:
2019-12-09
发布日期:
2019-12-24
通讯作者:
李同文
E-mail:litw@whu.edu.cn
作者简介:
沈焕锋(1980-),男,教授,研究方向为影像质量改善、数据融合与同化,遥感制图与应用等。E-mail:shenhf@whu.edu.cn
基金资助:
SHEN Huanfeng1,2, LI Tongwen1
Received:
2019-11-04
Revised:
2019-12-09
Published:
2019-12-24
Supported by:
摘要: 遥感技术具有时空大范围、低成本的独特优势,已经成为定量监测大气PM2.5污染时空分布的重要手段。本文综述了大气PM2.5遥感制图的进展:首先,对大气PM2.5遥感反演方法进行了归纳,以及总结了现有大气PM2.5遥感反演验证方法的适用条件与局限性;其次,对卫星反演大气PM2.5合成产品偏差校正和大气PM2.5无缝制图进行了梳理;最后总结了大气PM2.5遥感制图的前沿研究方向。
中图分类号:
沈焕锋, 李同文. 大气PM2.5遥感制图研究进展[J]. 测绘学报, 2019, 48(12): 1624-1635.
SHEN Huanfeng, LI Tongwen. Progress of remote sensing mapping of atmospheric PM2.5[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1624-1635.
[1] World Health Organization.Ambient air pollution:a global assessment of exposure and burden of disease[M]. Geneva, Switzerland:World Health Organization,2016. [2] ZHANG Yanlin, CAO Fang. Fine particulate matter (PM2.5) in China at a city level[J]. Scientific Reports, 2015(5):14884. [3] ENGEL-COX J, KIM OANH N T, VAN DONKELAAR A, et al. Toward the next generation of air quality monitoring:particulate matter[J]. Atmospheric Environment, 2013(80):584-590. [4] HOFF R M, CHRISTOPHER S A. Remote sensing of particulate pollution from space:have we reached the promised land?[J]. Journal of the Air & Waste Management Association, 2009, 59(6):645-675. [5] MARTIN R V. Satellite remote sensing of surface air quality[J]. Atmospheric Environment, 2008, 42(34):7823-7843. [6] 陈良富, 陶金花, 王子峰, 等. 空气质量卫星遥感监测技术进展[J]. 大气与环境光学学报, 2015, 10(2):117-125. CHEN Liangfu, TAO Jinhua, WANG Zifeng, et al. Review of satellite remote sensing of air quality[J]. Journal of Atmospheric and Environmental Optics, 2015, 10(2):117-125. [7] VAN DONKELAAR A, MARTIN RV, BRAUER M, et al. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth:development and application[J]. Environmental Health Perspectives, 2010, 118(6):847-855. [8] LIU Yang, PARK R J, JACOB D J, et al. Mapping annual mean ground-level PM2.5 concentrations using multiangle imaging spectroradiometer aerosol optical thickness over the contiguous United States[J]. Journal of Geophysical Research:Atmospheres, 2004, 109(D22):D22206. [9] VAN DONKELAAR A, MARTIN R V, PARK R J. Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing[J]. Journal of Geophysical Research:Atmospheres, 2006, 111(D21):D21201. [10] GENG Guannan, ZHANG Qiang, MARTIN R V, et al. Estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model[J]. Remote Sensing of Environment, 2015(166):262-270. [11] LIN Changqing, LI Ying, YUAN Zibing, et al. Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5[J]. Remote Sensing of Environment, 2015(156):117-128. [12] LI Zhengqiang, ZHANG Ying, SHAO Jie, et al. Remote sensing of atmospheric particulate mass of dry PM2.5 near the ground:method validation using ground-based measurements[J]. Remote Sensing of Environment, 2016(173):59-68. [13] ZHANG Ying, LI Zhengqiang. Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation[J]. Remote Sensing of Environment, 2015(160):252-262. [14] BAI Yang, WU Lixin, QIN Kai, et al. A geographically and temporally weighted regression model for ground-level PM2.5 estimation from satellite-derived 500 m resolution AOD[J]. Remote Sensing, 2016, 8(3):262. [15] HU Xuefei, WALLER L A, LYAPUSTIN A, et al. Estimating ground-level PM2.5 concentrations in the Southeastern United States using MAIAC AOD retrievals and a two-stage model[J]. Remote Sensing of Environment, 2014(140):220-232. [16] LEE H J, LIU Y, COULL BA, et al. A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations[J]. Atmospheric Chemistry and Physics, 2011, 11(15):7991-8002. [17] GUPTA P, CHRISTOPHER S A. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products:2. a neural network approach[J]. Journal of Geophysical Research:Atmospheres, 2009, 114(D20):D20205. [18] GUPTA P, CHRISTOPHER S A. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products:multiple regression approach[J]. Journal of Geophysical Research:Atmospheres, 2009, 114(D14):D14205. [19] WANG Jun, CHRISTOPHER S A. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass:implications for air quality studies[J]. Geophysical Research Letters, 2003, 30(21):2095. [20] LYU Baolei, HU Yongtao, ZHANG Wenxian, et al. Fusion method combining ground-level observations with chemical transport model predictions using an ensemble deep learning framework:application in China to estimate spatiotemporally-resolved PM2.5 exposure fields in 2014-2017[J]. Environmental Science & Technology, 2019, 53(13):7306-7315. [21] XUE Tao, ZHENG Yixuan, GENG Guannan, et al. Fusing observational, satellite remote sensing and air quality model simulated data to estimate spatiotemporal variations of PM2.5exposure in China[J]. Remote Sensing, 2017, 9(3):221. [22] DI Qian, KOUTRAKIS P, SCHWARTZ J. A hybrid prediction model for PM2.5 mass and components using a chemical transport model and land use regression[J]. Atmospheric Environment, 2016(131):390-399. [23] VAN DONKELAAR A, MARTIN R V, BRAUER M, et al. Global estimates of fine particulate matter using a combined geophysical-statistical method with information from satellites, models, and monitors[J]. Environmental Science & Technology, 2016, 50(7):3762-3772. [24] BRIGGS D J, COLLINS S, ELLIOTT P, et al. Mapping urban air pollution using GIS:a regression-based approach[J]. International Journal of Geographical Information Science, 1997, 11(7):699-718. [25] TIAN Jie, CHEN Dongmei. A semi-empirical model for predicting hourly ground-level fine particulate matter (PM2.5) concentration in southern Ontario from satellite remote sensing and ground-based meteorological measurements[J]. Remote Sensing of Environment, 2010, 114(2):221-229. [26] ZOU Bin, CHEN Jingwen, ZHAI Liang, et al. Satellite based mapping of ground PM2.5 concentration using generalized additive modeling[J]. Remote Sensing, 2017, 9(1):1. [27] LIU Yang, PACIOREK C J, KOUTRAKIS P. Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information[J]. Environmental Health Perspectives, 2009, 117(6):886-892. [28] XIE Yuanyu, WANG Yuxuan, BILAL M, et al. Mapping daily PM2.5 at 500 m resolution over Beijing with improved hazy day performance[J]. Science of the Total Environment, 2019(659):410-418. [29] WANG Wei, MAO Feiyue, DU Lin, et al. Deriving hourly PM2.5 concentrations from Himawari-8 AODs over Beijing-Tianjin-Hebei in China[J]. Remote Sensing, 2017, 9(8):858. [30] MA Zongwei, HU Xuefei, SAYER A M, et al. Satellite-based spatiotemporal trends in PM2.5 concentrations:China, 2004-2013[J]. Environmental Health Perspectives, 2016, 124(2):184-192. [31] XIE Yuanyu, WANG Yuxuan, ZHANG Kai, et al. Daily estimation of ground-level PM2.5 concentrations over Beijing using 3 km resolution MODIS AOD[J]. Environmental Science & Technology, 2015, 49(20):12280-12288. [32] SONG Weize, JIA Haifeng, HUANG Jingfeng, et al. A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China[J]. Remote Sensing of Environment, 2014(154):1-7. [33] ZOU Bin, PU Qiang, BILAL M, et al. High-resolution satellite mapping of fine particulates based on geographically weighted regression[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(4):495-499. [34] MA Zongwei, HU Xuefei, HUANG Lei, et al. Estimating ground-level PM2.5 in China using satellite remote sensing[J]. Environmental Science & Technology, 2014, 48(13):7436-7444. [35] HE Qingqing, HUANG Bo. Satellite-based high-resolution PM2.5 estimation over the Beijing-Tianjin-Hebei region of China using an improved geographically and temporally weighted regression model[J]. Environmental Pollution, 2018(236):1027-1037. [36] HE Qingqing, HUANG Bo. Satellite-based mapping of daily high-resolution ground PM2.5 in China via space-time regression modeling[J]. Remote Sensing of Environment, 2018(206):72-83. [37] LI Tongwen, SHEN Huanfeng, ZENG Chao, et al. Point-surface fusion of station measurements and satellite observations for mapping PM2.5 distribution in China:methods and assessment[J]. Atmospheric Environment, 2017(152):477-489. [38] HU Xuefei, BELLE J H, MENG Xia, et al. Estimating PM2.5 concentrations in the conterminous United States using the random forest approach[J]. Environmental Science & Technology, 2017,51(12):6936-6944. [39] BROKAMP C, JANDAROV R, HOSSAIN M, et al. Predicting daily urban fine particulate matter concentrations using a random forest model[J]. Environmental Science &Technology, 2018, 52(7):4173-4179. [40] DE HOOGH K, RITIER H, STAFOGGIA M, et al. Modelling daily PM2.5 concentrations at high spatio-temporal resolution across Switzerland[J]. Environmental Pollution, 2018(233):1147-1154. [41] CHEN Zhaoyue, ZHANG Tianhao, ZHANG Rong, et al. Extreme gradient boosting model to estimate PM2.5 concentrations with missing-filled satellite data in China[J]. Atmospheric Environment, 2019(202):180-189. [42] SUN Yibo, ZENG Qiaolin, GENG Bing, et al. Deep learning architecture for estimating hourly ground-level PM2.5 using satellite remote sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2019,16(9):1343-1347. [43] LI Tongwen, SHEN Huanfeng, YUAN Qiangqiang, et al. Estimating ground-level PM2.5 by fusing satellite and station observations:a geo-intelligent deep learning approach[J]. Geophysical Research Letters, 2017, 44(23):11985-11993. [44] PARK Yongbee, KWON Byungjoon, HEO Juyeon, et al. Estimating PM2.5 concentration of the conterminous United States via interpretable convolutional neural networks[J]. Environmental Pollution, 2019:113395. [45] DI Qian, AMINI H, SHI Liuhua, et al. An ensemble-based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution[J]. Environment International, 2019(130):104909. [46] CHEN Jiangping, YIN Jianhua, ZANG Lin, et al. Stacking machine learning model for estimating hourly PM2.5 in China based on Himawari 8 aerosol optical depth data[J]. Science of the Total Environment, 2019(697):134021. [47] XIAO Qingyang, CHANG H H, GENG Guannan, et al. An ensemble machine-learning model to predict historical PM2.5 concentrations in China from satellite data[J]. Environmental Science & Technology, 2018, 52(22):13260-13269. [48] DENG Min, YANG Wentao, LIU Qiliang. Geographically weighted extreme learning machine:a method for space-time prediction[J]. Geographical Analysis, 2017(49):433-450. [49] GUO Yuanxi, TANG Qiuhong, GONG Daoyi, et al. Estimating ground-level PM2.5 concentrations in Beijing using a satellite-based geographically and temporally weighted regression model[J]. Remote Sensing of Environment, 2017(198):140-149. [50] WANG Yuan, YUAN Qiangqiang, LI Tongwen, et al. Large-scale MODIS AOD products recovery:spatial-temporal hybrid fusion considering aerosol variation mitigation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019(157):1-12. [51] WANG Yuan, YUAN Qiangqiang, LI Tongwen, et al. Evaluation and comparison of MODIS Collection 6.1 aerosol optical depth against AERONET over regions in China with multifarious underlying surfaces[J]. Atmospheric Environment, 2019(200):280-301. [52] SHEN Huanfeng, LI Tongwen, YUAN Qiangqiang, et al. Estimating regional ground-level PM2.5 directly from satellite top-of-atmosphere reflectance using deep belief networks[J]. Journal of Geophysical Research:Atmospheres, 2018, 123(24):13875-13886. [53] LIU Jianjun, WENG Fuzhong, LI Zhanqing. Satellite-based PM2.5 estimation directly from reflectance at the top of the atmosphere using a machine learning algorithm[J]. Atmospheric Environment, 2019(208):113-122. [54] RODRIGUEZ J D, PEREZ A, LOZANO J A. Sensitivity analysis of k-fold cross validation in prediction error estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(3):569-575. [55] XIAO Qingyang, WANG Yujie, CHANG H H, et al. Full-coverage high-resolution daily PM2.5 estimation using MAIAC AOD in the Yangtze River Delta of China[J]. Remote Sensing of Environment, 2017(199):437-446. [56] FRIBERG M D, KAHN R A, LIMBACHER J A, et al. Constraining chemical transport PM2.5 modeling outputs using surface monitor measurements and satellite retrievals:application over the San Joaquin Valley[J]. Atmospheric Chemistry and Physics, 2018, 18(17):12891-12913. [57] ZHANG Tianhao, ZHU Zhongmin, GONG Wei, et al. Estimation of ultrahigh resolution PM2.5 concentrations in urban areas using 160 m GaoFen-1 AOD retrievals[J]. Remote Sensing of Environment, 2018(216):91-104. [58] MA Zongwei, LIU Yang, ZHAO Qiuyue, et al. Satellite-derived high resolution PM2.5 concentrations in Yangtze River Delta region of China using improved linear mixed effects model[J]. Atmospheric Environment, 2016(133):156-164. [59] HUANG Keyong, XIAO Qingyang, MENG Xia, et al. Predicting monthly high-resolution PM2.5 concentrations with random forest model in the North China Plain[J]. Environmental Pollution, 2018(242):675-683. [60] ZHENG Yixuan, ZHANG Qiang, LIU Yang, et al. Estimating ground-level PM2.5 concentrations over three megalopolises in China using satellite-derived aerosol optical depth measurements[J]. Atmospheric Environment, 2016(124):232-242. [61] LÜ Baolei, HU Yongtao, CHANG H H, et al. Improving the accuracy of daily PM2.5 distributions derived from the fusion of ground-level measurements with aerosol optical depth observations, a case study in North China[J]. Environmental Science & Technology, 2016, 50(9):4752-4759. [62] BI Jianzhao, BELLE J H, WANG Yujie, et al. Impacts of snow and cloud covers on satellite-derived PM2.5 levels[J]. Remote Sensing of Environment, 2019(221):665-674. [63] KLOOG I, SOREK-HAMER M, LYAPUSTIN A, et al. Estimating daily PM2.5 and PM10 across the complex geo-climate region of Israel using MAIAC satellite-based AOD data[J]. Atmospheric Environment, 2015(122):409-416. [64] JUST A C, WRIGHT R O, SCHWARTZ J, et al. Using high-resolution satellite aerosol optical depth to estimate daily PM2.5 geographical distribution in Mexico City[J]. Environmental Science & Technology, 2015, 49(14):8576-8584. [65] KLOOG I, NORDIO F, COULL B A, et al. Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2.5 exposures in the Mid-Atlantic states[J]. Environmental Science &Technology, 2012, 46(21):11913-11921. [66] KLOOG I, KOUTRAKIS P, COULL B A, et al. Assessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements[J]. Atmospheric Environment, 2011, 45(35):6267-6275. [67] LI Tongwen, ZHANG Chengyue, SHEN Huanfeng, et al.Real-time and seamless monitoring of ground-level PM2.5 using satellite remote sensing[C]//ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. Beijing,2018. [68] 张良培, 沈焕锋. 遥感数据融合的进展与前瞻[J]. 遥感学报, 2016, 20(5):1050-1061. ZHANG Liangpei, SHEN Huanfeng. Progress and future of remote sensing data fusion[J]. Journal of Remote Sensing, 2016, 20(5):1050-1061. [69] 吴金橄, 程青, 李慧芳, 等. 遥感时空融合中单/双时相辅助数据的适用性分析[J]. 地理与地理信息科学, 2017, 33(5):9-15. WU Jingan, CHENG Qing, LI Huifang, et al. Applicability analysis of mono- and bi-temporal auxiliary data in remote sensing spatiotemporal fusion[J]. Geography and Geo-Information Science, 2017, 33(5):9-15. [70] CHENG Qing, LIU Huiqing, SHEN Huanfeng, et al. A spatial and temporal nonlocal filter-based data fusion method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8):4476-4488. [71] 吴健生, 王茜. 基于AOD数据反演地面PM2.5浓度研究进展[J]. 环境科学与技术, 2017, 40(8):68-76. WU Jiansheng, Wang Xi. Research progress ofretrieval ground-level PM2.5 concentration based on AOD data[J]. Environmental Science & Technology, 2017, 40(8):68-76. [72] XU Shan, ZOU Bin, LIN Yan, et al. Strategies of method selection for fine scale PM2.5 mapping in intra-urban area under crowdsourcing monitoring[J]. Atmospheric Measurement Techniques Discussions, 2019:1-21. DOI:10.5194/amt-2018-402. [73] HUANG Keyong, BI Jianzhao, MENG Xia, et al. Estimating daily PM2.5 concentrations in New York City at the neighborhood-scale:implications for integrating non-regulatory measurements[J]. Science of The Total Environment, 2019(697):134094. [74] BI Jianzhao, STOWELL J, SETO E YW, et al. Contribution of low-cost sensor measurements to the prediction of PM2.5 levels:a case study in Imperial County, California, USA[J]. Environmental Research, 2020(180):108810. [75] LU Sijia, WANG Dongsheng, LI Xiaobing, et al. Three-dimensional distribution of fine particulate matter concentrations and synchronous meteorological data measured by an unmanned aerial vehicle (UAV) in Yangtze River Delta, China[J]. Atmospheric Measurement Techniques Discussions, 2016(57):1-19. DOI:10.5194/amt-2016-57. [76] PENG Zhongren, WANG Dongsheng, WANG Zhanyong, et al. A study of vertical distribution patterns of PM2.5 concentrations based on ambient monitoring with unmanned aerial vehicles:a case in Hangzhou, China[J]. Atmospheric Environment, 2015(123):357-369. [77] VAN DONKELAAR Aaron, MARTIN Randall V, LI Chi, et al. Regional estimates of chemical composition of fine particulate matter using a combined geoscience-statistical method with information from satellites, models, and monitors[J]. Environmental science & technology, 2019, 53(5):2595-2611. |
[1] | 余俊鹏, 吴伟东, 孙佳明, 满益云, 沈刚. 附加傅里叶补偿项的卫星遥感影像RFM平差方法[J]. 测绘学报, 2022, 51(1): 127-134. |
[2] | 唐新明, 谢俊峰, 莫凡, 窦显辉, 李新, 李少宁, 李松, 黄庚华, 付兴科, 刘仁, 朱广彬, 欧阳斯达, 唐洪钊, 陈辉. 高分七号卫星双波束激光测高仪在轨几何检校与试验验证[J]. 测绘学报, 2021, 50(3): 384-395. |
[3] | 周苗, 常晓涛, 朱广彬, 瞿庆亮, 刘伟. 卫星重力与光学遥感组合的念青唐古拉山脉冰川变化分析[J]. 测绘学报, 2021, 50(10): 1331-1337. |
[4] | 李国元, 唐新明, 陈继溢, 么嘉棋, 刘诏, 高小明, 左志强, 周晓青. 高分七号卫星激光测高数据处理与精度初步验证[J]. 测绘学报, 2021, 50(10): 1338-1348. |
[5] | 唐新明, 李国元, 高小明, 陈继溢. 卫星激光测高严密几何模型构建及精度初步验证[J]. 测绘学报, 2016, 45(10): 1182-1191. |
[6] | 阚希, 张永宏, 曹庭, 王剑庚, 田伟. 利用多光谱卫星遥感和深度学习方法进行青藏高原积雪判识[J]. 测绘学报, 2016, 45(10): 1210-1221. |
[7] | 严明, 王智勇, 汪承义, 于冰洋. 大气折射对光学卫星遥感影像几何定位的影响分析[J]. 测绘学报, 2015, 44(9): 995-1002. |
[8] | 赵世湖, 尹丹, 窦显辉, 郭莉. 单景卫星遥感影像目标运动信息提取技术[J]. 测绘学报, 2015, 44(3): 316-322. |
[9] | 刘耀林,赵翔,马潇雅,刘殿锋. TM/ETM+影像大气校正产品质量评价方法研究[J]. 测绘学报, 2012, 41(4): 0-590. |
[10] | 袁修孝,余翔. 高分辨率卫星遥感影像姿态角系统误差检校[J]. 测绘学报, 2012, 41(3): 0-416. |
[11] | 李德仁. 我国第一颗民用三线阵立体测图卫星—资源三号卫星[J]. 测绘学报, 2012, 41(3): 0-416. |
[12] | 龚辉,姜挺,江刚武,张锐,贾博. 基于四元数微分方程的高分辨率卫星遥感影像外方位元素求解[J]. 测绘学报, 2012, 41(3): 0-416. |
[13] | 邢帅 徐青 刘军 李建胜. 多源卫星遥感影像的光束法区域网平差[J]. 测绘学报, 2009, 38(2): 0-174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||