测绘学报 ›› 2019, Vol. 48 ›› Issue (12): 1624-1635.doi: 10.11947/j.AGCS.2019.20190456

• 综述 • 上一篇    下一篇

大气PM2.5遥感制图研究进展

沈焕锋1,2, 李同文1   

  1. 1. 武汉大学资源与环境科学学院, 湖北 武汉 430079;
    2. 地球空间信息技术协同创新中心, 湖北 武汉 430079
  • 收稿日期:2019-11-04 修回日期:2019-12-09 发布日期:2019-12-24
  • 通讯作者: 李同文 E-mail:litw@whu.edu.cn
  • 作者简介:沈焕锋(1980-),男,教授,研究方向为影像质量改善、数据融合与同化,遥感制图与应用等。E-mail:shenhf@whu.edu.cn
  • 基金资助:
    湖北省技术创新专项重大项目(2019AAA046);国家重点研发计划(2016YFC0200900)

Progress of remote sensing mapping of atmospheric PM2.5

SHEN Huanfeng1,2, LI Tongwen1   

  1. 1. School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China;
    2. Collaborative Innovation Center of Geospatial Technology, Wuhan 430079, China
  • Received:2019-11-04 Revised:2019-12-09 Published:2019-12-24
  • Supported by:
    The Major Projects of Technological Innovation of Hubei Province (No. 2019AAA046);The National Key Research and Development Program of China (No. 2016YFC0200900)

摘要: 遥感技术具有时空大范围、低成本的独特优势,已经成为定量监测大气PM2.5污染时空分布的重要手段。本文综述了大气PM2.5遥感制图的进展:首先,对大气PM2.5遥感反演方法进行了归纳,以及总结了现有大气PM2.5遥感反演验证方法的适用条件与局限性;其次,对卫星反演大气PM2.5合成产品偏差校正和大气PM2.5无缝制图进行了梳理;最后总结了大气PM2.5遥感制图的前沿研究方向。

关键词: 大气PM2.5制图, 卫星遥感, 星-地融合, 精度验证, 无缝监测

Abstract: Satellite remote sensing has played a critical role in the quantitative retrieval of atmospheric PM2.5, which can be attributed to its advantages of wide spatiotemporal coverage and low cost. This paper reviews the progress of remote sensing mapping of atmospheric PM2.5. First, the atmospheric PM2.5 remote sensing retrieval methods are summarized, and the applicable conditions and limitations of the validation approaches for atmospheric PM2.5 remote sensing retrieval are analyzed. Second, this paper summarizes the bias correction of satellite retrieved PM2.5 synthesis product and the missing information reconstruction of satellite retrieved PM2.5. Finally, the prospective directions of remote sensing mapping of atmospheric PM2.5 are discussed.

Key words: atmospheric PM2.5 mapping, satellite remote sensing, satellite and ground fusion, accuracy validation, gapless monitoring

中图分类号: