测绘学报 ›› 2019, Vol. 48 ›› Issue (12): 1604-1623.doi: 10.11947/j.AGCS.2019.20190469
张过1, 蒋永华2, 李立涛3, 邓明军4, 赵瑞山5
收稿日期:
2019-11-11
修回日期:
2019-11-13
发布日期:
2019-12-24
通讯作者:
蒋永华
E-mail:jiangyh@whu.edu.cn
作者简介:
张过(1976-),男,博士,教授,博士生导师,研究方向为全球地理空间基准产品研制与应用。E-mail:guozhang@whu.edu.cn
ZHANG Guo1, JIANG Yonghua2, LI Litao3, DENG Mingjun4, ZHAO Ruishan5
Received:
2019-11-11
Revised:
2019-11-13
Published:
2019-12-24
摘要: 介绍了国内外高分辨率光学/SAR观测卫星进展与发展特点,归纳总结了星载光学/SAR几何辐射定标的基本原理,综述了几何辐射定标研究进展,最后梳理了卫星几何辐射定标的前沿问题。
中图分类号:
张过, 蒋永华, 李立涛, 邓明军, 赵瑞山. 高分辨率光学/SAR卫星几何辐射定标研究进展[J]. 测绘学报, 2019, 48(12): 1604-1623.
ZHANG Guo, JIANG Yonghua, LI Litao, DENG Mingjun, ZHAO Ruishan. Research progress of high-resolution optical/SAR satellite geometric radiometric calibration[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1604-1623.
[1] YE Bei, TIAN Shufang, GE Jia, et al. Assessment of World View-3 data for lithological mapping[J]. Remote sensing, 2017, 9(11):1132. [2] WONG K. Geometric and cartographic accuracy of ERTS-1 imagery[J]. Photogrammetric Engineering and Remote Sensing, 1975, 41(5):621-635. [3] BOUILLON A, BRETON E, DE LUSSY F, et al. SPOT5 geometric image quality[C]//Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium. Toulouse, France:IEEE, 2003:303-305. [4] GRODECKI J, LUTES J. IKONOS geometric calibrations[Z]. Baltimore, 2005. [5] AGUILAR M A, DEL MAR SALDAÙA M, AGUILAR F J. Assessing geometric accuracy of the orthorectification process from GeoEye-1 and WorldView-2 panchromatic images[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 21:427-435. [6] 张新伟, 戴君, 刘付强. 敏捷遥感卫星工作模式研究[J]. 航天器工程, 2011, 20(4):32-38. ZHANG Xinwei, DAI Jun, LIU Fuqiang. Research on working mode of remote sensing satellite with agile attitude control[J]. Spacecraft Engineering, 2011, 20(4):32-38. [7] GRESLOU D, DE LUSSY F, DELVIT J M, et al. Pleiades-HR innovative techniques for geometric image quality commissioning[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, XXXIX-B1:543-547. [8] 张过. 线阵推扫式光学卫星几何高精度处理[M]. 北京:科学出版社, 2016. ZHANG Guo. Linear CCD array pushbroom optical satellites geometric precision processing[M]. Beijing:Science Press, 2016. [9] VALORGE C, MEYGRET A, LEBEGUE L, et al. 40 years of experience with SPOT in-flight calibration[C]//Proceedings of ISPRS Workshop on Radiometric and Geometric Calibration. Gulfport:[s.n.], 2003. [10] BRETON E, BOUILLON A, GACHET R, et al. Pre-fight and in-flight geometric calibration of SPOT5 HRG and HRS images[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2002, 34(1):20-25. [11] BOUILLON A, BRETON E, DELUSSY F, et al. SPOT5 HRG and HRS first in-flight geometric quality results[C]//Proceedings of the SPIE 4881, Sensors, Systems, and Next-Generation Satellites VI. Crete, Greece:SPIE, 2003:212-223. [12] CUTLER B, COEURDEVEY L. Pléiades 1B and SPOT6 image quality status after commissioning and 1st year in orbit[R]. Louisville, Kentucky:[s.n.], 2014. [13] DIAL G, BOWEN H, GERLACH F, et al. IKONOS satellite, imagery, and products[J]. Remote Sensing of Environment, 2003, 88(1-2):23-36. [14] GRODECKI J, DIAL G. IKONOS geometric accuracy validation[J]. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 2002, 34(1):50-55. [15] MULAWA D. GeoEye-1 geolocation assessment and reporting update[R].[S.l.]:JACIE, 2011. [16] CRESPI M, COLOSIMO G, DE VENDICTIS L, et al. GeoEye-1:analysis of radiometric and geometric capability[M]. SITHAMPARANATHAN K, MARCHESE M, RUGGIERI M, et al. Personal Satellite Services. Berlin:Springer, 2010:354-369. [17] MULAWA D. On-orbit geometric calibration of the OrbView-3 high resolution imaging satellite[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2004, 35(B1):1-6. [18] TAKAKU J, TADONO T. PRISM on-orbit geometric calibration and DSM performance[J]. IEEE transactions on Geoscience and Remote Sensing, 2009, 47(12):4060-4073. [19] TADONO T, SHIMADA M, MURAKAMI H, et al. Calibration of PRISM and AVNIR-2 onboard ALOS "Daichi"[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(12):4042-4050. [20] KUBIK P, LEBōGUE L, FOUREST S, et al. First in-flight results of Pleiades 1A innovative methods for optical calibration[C]//Proceedings of the International Conference on Space Optics-ICSO 2012. Corsica, France:SPIE, 2012:1056407. [21] 张过, 袁修孝, 李德仁. 基于偏置矩阵的卫星遥感影像系统误差补偿[J]. 辽宁工程技术大学学报(自然科学版), 2007, 26(4):517-519. ZHANG Guo, YUAN Xiuxiao, LI Deren. Redressing system error in satellite image based on bias matrix[J]. Journal of Liaoning Technical University (Natural Science Edition), 2007, 26(4):517-519. [22] 祝小勇, 张过, 唐新明, 等. 资源一号02B卫星影像几何外检校研究及应用[J]. 地理与地理信息科学, 2009, 25(3):16-18, 27. ZHU Xiaoyong, ZHANG Guo, TANG Xinming, et al. Research and application of CBRS02B image geometric exterior calibration[J]. Geography and Geo-Information Science, 2009, 25(3):16-18, 27. [23] JIANG Yonghua, ZHANG Guo, TANG Xinming, et al. Geometric calibration and accuracy assessment of ZiYuan-3 multispectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7):4161-4172. [24] 蒋永华, 张过, 唐新明, 等. 资源三号测绘卫星三线阵影像高精度几何定标[J]. 测绘学报, 2013, 42(4):523-529, 553. JIANG Yonghua, ZHANG Guo, TANG Xinming, et al. High accuracy geometric calibration of ZY-3 three-line image[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(4):523-529, 553. [25] 蒋永华, 张过, 唐新明, 等. 资源三号测绘卫星多光谱影像高精度谱段配准[J]. 测绘学报, 2013, 42(6):884-890, 897. JIANG Yonghua, ZHANG Guo, TANG Xinming, et al. Research on the high accuracy band-to-band registration method of ZY-3 multispectral image[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(6):884-890, 897. [26] JIANG Yonghua, ZHANG Guo, TANG Xinming, et al. Improvement and assessment of the geometric accuracy of Chinese high-resolution optical satellites[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(10):4841-4852. [27] JIANG Yonghua, ZHANG Guo, CHEN Peng, et al. Systematic error compensation based on a rational function model for ZiYuan1-02C[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7):3985-3995. [28] ZHANG Guo, JIANG Yonghua, LI Deren, et al. In-orbit geometric calibration and validation of ZY-3 linear array sensors[J]. The Photogrammetric Record, 2014, 29(145):68-88. [29] 杨博, 王密. 资源一号02C卫星全色相机在轨几何定标方法[J]. 遥感学报, 2013, 17(5):1175-1190. YANG Bo, WANG Mi. On-orbit geometric calibration method of ZY-102C panchromatic camera[J]. Journal of Remote Sensing, 2013, 17(5):1175-1190. [30] 王密, 程宇峰, 常学立, 等. 高分四号静止轨道卫星高精度在轨几何定标[J]. 测绘学报, 2017, 46(1):53-61. DOI:10.11947/j.AGCS.2017.20160300. WANG Mi, CHENG Yufeng, CHANG Xueli, et al. High accuracy on-orbit geometric calibration of geostationary satellite GF4[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(1):53-61. DOI:10.11947/j.AGCS.2017.20160300. [31] 丁华祥, 张勇, 邹松柏. 资源02C卫星P/MS相机内方位几何标定方法研究[J]. 测绘地理信息, 2014, 39(1):78-82. DING Huaxiang, ZHANG Yong, ZOU Songbo. On-orbit linterior orientation parameters(IOP) calibration of panchromatic/multispectral camera of ZY-102C satellite[J]. Journal of Geomatics, 2014, 39(1):78-82. [32] 蒋永华, 徐凯, 张过, 等. 线阵推扫光学卫星外方位元素自检校方法[J]. 同济大学学报(自然科学版), 2016, 44(8):1266-1271. JIANG Yonghua, XU Kai, ZHANG Guo, et al. A method of exterior auto-calibration for linear CCD array pushbroom optical satellites[J]. Journal of Tongji University (Natural Science), 2016, 44(8):1266-1271. [33] GUAN Zhichao, JIANG Yonghua, WANG Jingyin, et al. Star-based calibration of the installation between the camera and star sensor of the LuoJia 1-01 Satellite[J]. Remote Sensing, 2019, 11(18):2081. [34] JIANG Yonghua, CUI Zihao, ZHANG Guo, et al. CCD distortion calibration without accurate ground control data for pushbroom satellites[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 142:21-26. [35] JIANG Yonghua, ZHANG Guo, WANG Tong, et al. In-orbit geometric calibration without accurate ground control data[J]. Photogrammetric Engineering & Remote Sensing, 2018, 84(8):485-493. [36] 赵英时. 遥感应用分析原理与方法[M]. 北京:科学出版社, 2003. ZHAO Yingshi. Principles and methods of remote sensing application analysis[M]. Beijing:Science Press, 2003. [37] MITCHELL H B. Image fusion:theories, techniques and applications[M]. Berlin:Springer, 2010:200. [38] PESTA F, BHATTA S, HELDER D, et al. Radiometric non-uniformity characterization and correction of Landsat 8 OLI using earth imagery-based techniques[J]. Remote Sensing, 2015, 7(1):430-446. [39] KUBIK P, PASCAL V. AMETHIST:a method for equalization thanks to HISTograms[C]//Proceedings of the SPIE 5570, Sensors, Systems, and Next-Generation Satellites VIII. Canary Islands, Spain:SPIE, 2004:256. [40] LEROY M, HENRY P, GUENTHER B, et al. Comparison of CNES spherical and NASA hemispherical large aperture integration sources:II. Using the SPOT-2 satellite instruments[J]. Remote Sensing of Environment, 1990, 31(2):97-104. [41] XIONG X, ERIVES H, XIONG S, et al. Performance of Terra MODIS solar diffuser and solar diffuser stability monitor[C]//Proceedings of the SPIE 5882, Earth Observing Systems X. San Diego, California:SPIE, 2005:58820S. [42] XIONG Xiaoxiong, BARNES W. An overview of MODIS radiometric calibration and characterization[J]. Advances in Atmospheric Sciences, 2006, 23(1):69-79. [43] MARKHAM B L, BONCYK W C, BARKER J L, et al. Landsat-7 enhanced thematic mapper plus in-flight radiometric calibration[C]//Proceedings of International Geoscience and Remote Sensing Symposium. Lincoln, NE:IEEE, 1996:1273-1275. [44] MORFITT R, BARSI J, LEVY R, et al. Landsat-8 operational land imager (OLI) radiometric performance on-orbit[J]. Remote Sensing, 2015, 7(2):2208-2237. [45] HORN B K P, WOODHAM R J. Destriping Landsat MSS images by histogram modification[J]. Computer Graphics and Image Processing, 1979, 10(1):69-83. [46] SHRESTHA A K. Relative gain characterization and correction for pushbroom sensors on lifetime image statistics and wavelet filtering[D]. Vermillion:South Dakota State University, 2010. [47] PASCAL V, LEBEGUE L, MEYGRET A, et al. SPOT5:first in-flight radiometric image quality results[C]//Proceedings of the SPIE 4881, Sensors, Systems, and Next-Generation Satellites VI. Crete, Greece:SPIE, 2003:200-211. [48] MEYGRET A, FRATTER C, BRETON E, et al. In-flight assessment of SPOT5 image quality[C]//Proceedings of the SPIE 4881, Sensors, Systems, and Next-Generation Satellites VI. Crete, Greece:SPIE, 2003:179-188. [49] VANDERWERFF K, MORFITT R. Bias estimation for the Landsat 8 operational land imager[C]//Proceedings of the SPIE 8153, Earth Observing Systems XVI. San Diego, California:SPIE, 2011:17-23. [50] MARKHAM B, BARSI J, KVARAN G, et al. Landsat-8 operational land imager radiometric calibration and stability[J]. Remote Sensing, 2014, 6(12):12275-12308. [51] KRAUSE K S. Relative radiometric characterization and performance of the QuickBird high-resolution commercial imaging satellite[C]//Proceedings of the SPIE 5542, Earth Observing Systems IX. Denver, Colorado:SPIE, 2004:35-44 [52] SHIMADA M, OAKU H, OGUMA H, et al. Calibration of advanced visible and near infrared radiometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3):1472-1483. [53] ANDERSON C, NAUGHTON D, BRUNN A, et al. Radiometric correction of RapidEye imagery using the on-orbit side-slither method[C]//Proceedings of the SPIE 8180, Image and Signal Processing for Remote Sensing XVII. Prague, Czech Republic:SPIE, 2011:818008. [54] MATSUOKA M, TADONO T, IGARASHI T, et al. Calibration plan of advanced visible and near infrared radiometer type 2[C]//Proceedings of IEEE International Geoscience and Remote Sensing Symposium. Toronto, Ontario, Canada:IEEE, 2002:2236-2238. [55] BEGNI G, HENRY P. The SPOT1 image quality:two years of experience[J]. ISPRS Archives, 1988, XXVII:103-112. [56] HENRY P, MEYGRET A. Calibration of HRVIR and vegetation cameras on SPOT4[J]. Advances in Space Research, 2001, 28(1):49-58. [57] HELDER D L. Comparison of MSS relative radiometric calibration methods[C]//Proceedings of the SPIE 1938, Recent Advances in Sensors, Radiometric Calibration, and Processing of Remotely Sensed Data. Orlando, FL:SPIE, 1993:46-55. [58] MICIJEVIC E, MORFITT R, CHOATE M. Landsat 8 on-orbit characterization and calibration system[C]//Proceedings of the SPIE 8153, Earth Observing Systems XVI. San Diego, California:SPIE, 2011:81530E. [59] 雷学武, 吴君丽, 刘俊荣. CBERS-1 CCD星上定标数据在辐射校正中的应用[J]. 国土资源遥感, 2003(3):63-66. LEI Xuewu, WU Junli, LIU Junrong. The application of CBERS-1 CCD on-star calibration data to the image radiate rectification[J]. Remote Sensing for Land & Resources, 2003(3):63-66. [60] XIONG J, BARNES B. MODIS on-orbit calibration methodologies[R]. Amsterdam:NASA, 2004. [61] MENDENHALL J A, LENCIONI D E. EO-1 advanced land imager on-orbit radiometric calibration[C]//Proceedings of IEEE International Geoscience and Remote Sensing Symposium. Toronto, Ontario, Canada:IEEE, 2002:572-575. [62] MARKHAM B L, ONG L, BARSI J A, et al. Radiometric calibration stability of the EO-1 advanced land imager:5 years on-orbit[C]//Proceedings of the SPIE 6361, Sensors, Systems, and Next-Generation Satellites X. Stockholm, Sweden:SPIE, 2006:63610U. [63] 范斌, 陈旭, 李碧岑, 等. "高分五号"卫星光学遥感载荷的技术创新[J]. 红外与激光工程, 2017, 46(1):0102002. FAN Bin, CHEN Xu, LI Bicen, et al. Technical innovation of optical remote sensing payloads onboard GF-5 satellite[J]. Infrared and Laser Engineering, 2017, 46(1):0102002. [64] TADONO T, SHIMADA M, MURAKAMI H, et al. Preliminary results of calibration for ALOS optical sensors and validation of generated PRISM DSM[C]//Proceedings of the SPIE 6361, Sensors, Systems, and Next-Generation Satellites X. Stockholm, Sweden:SPIE, 2006:636104. [65] PAGNUTTI M, RYAN R E, KELLY M, et al. Radiometric characterization of IKONOS multispectral imagery[J]. Remote Sensing of Environment, 2003, 88(1-2):53-68. [66] GERACE A D, SCHOTT J R, BROWN S D, et al. Using DIRSIG to identify uniform sites and demonstrate the utility of the side-slither calibration technique for Landsat's new pushbroom instruments[C]//Proceedings of the SPIE 8390, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII. Baltimore, Maryland:SPIE, 2012:83902A. [67] KRAUSE K S. QuickBird relative radiometric performance and on-orbit long term trending[C]//Proceedings of the SPIE6296, Earth Observing Systems XI. San Diego, California:SPIE, 2006:62960P. [68] KRAUSE K S. WorldView-1 pre- and post-launch radiometric calibration and early on-orbit characterization[C]//Proceedings of the SPIE 7081, Earth Observing Systems XIII. San Diego, California:SPIE, 2008:708116. [69] MEYGRET A, DINGUIRARD M C, HENRY P J, et al. SPOT histogram data base[C]//Proceedings of the SPIE 2957, Advanced and Next-Generation Satellites II. Taormina, Italy:SPIE, 1997:322-331. [70] ANGAL A, HELDER D. Advanced land imager relative gain characterization and correction[C]//Proceedings of Pecora 16-Global Priorities in land Remote Sensing. Sioux Falls, SD:[s.n.], 2005. [71] HELDER D, HIJAZI S, RUGGLES T. A radiometric evaluation of the advanced land imager[C]//Proceedings of IEEE International Geoscience and Remote Sensing Symposium. Toronto, Ontario, Canada:IEEE, 2002:576-578. [72] SHRESTHA A K, HELDER D. Relative gain characterization and correction for pushbroom sensors based on lifetime image statistics[C]//Proceedings of the Civil Commercial Imagery Evaluation Workshop. Fairfax, VA:[s.n.], 2010. [73] HENDERSON B G, KRAUSE K S. Relative radiometric correction of QuickBird imagery using the side-slither technique on orbit[C]//Proceedings of the SPIE 5542, Earth Observing Systems IX. Denver, Colorado:SPIE, 2004:426. [74] MARTIN V, BLANCHET G, KUBIK P, et al. Pleiades-HR 1A&1B image quality commissioning:innovative radiometric calibration methods and results[C]//Proceedings of the SPIE 8866, Earth Observing Systems XVIII. San Diego, California:SPIE, 2013:886610. [75] THÉRET N, SEBBAG I. AMETHIST guidance:30000 eyes focused on the same spot[C]//Proceedings of SpaceOps 2006 Conference. Rome, Italy:AIAA, 2006:1-30. [76] LEBEGUE L, GRESLOU D, DELUSSY F, et al. Pleiades-HR image quality commissioning foreseen methods[C]//Proceedings of 2010 IEEE International Geoscience and Remote Sensing Symposium. Honolulu, HI:IEEE, 2010:1675-1678. [77] BLANCHET G, LEBEQUE L, FOUREST S, et al. Pleiades-HR innovative techniques for radiometric image quality commissioning[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, XXXIX-B1:513-518. [78] GERACE A, SCHOTT J, GARTLEY M, et al. An analysis of the side slither on-orbit calibration technique using the DIRSIG model[J]. Remote Sensing, 2014, 6(11):10523-10545. [79] 张过, 李立涛. 遥感25号无场化相对辐射定标[J]. 测绘学报, 2017, 46(8):1009-1016. DOI:10.11947/j.AGCS.2017.20160392. ZHANG Guo, LI Litao. A study on relative radiometric calibration without calibration field for YG-25[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(8):1009-1016. DOI:10.11947/j.AGCS.2017.20160392. [80] WANG Mi, CHEN Chaochao, PAN Jun, et al. A relative radiometric calibration method based on the histogram of side-slither data for high-resolution optical satellite imagery[J]. Remote Sensing, 2018, 10(3):381. [81] KNIGHT E J, KVARAN G. Landsat-8 operational land imager design, characterization and performance[J]. Remote Sensing, 2014, 6(11):10286-10305. [82] TYC G, TULIP J, SCHULTEN D, et al. The RapidEye mission design[J]. Acta Astronaut, 2005, 56(1):213-219. [83] GADALLAH F L, CSILLAG F, SMITH E J M. Destriping multisensor imagery with moment matching[J]. International Journal of Remote Sensing, 2000, 21(12):2505-2511. [84] SLATER P N, BIGGAR S F, HOLM R G, et al. Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors[J]. Remote Sensing of Environment, 1987, 22(1):11-37. [85] 陈世平. 空间相机设计与试验[M]. 北京:中国宇航出版社, 2003. CHEN Shiping. Space camera design and experiment[M]. Beijing:China Astronautic Publishing Press, 2003. [86] LACHERADE S, FOUGNIE B, HENRY P, et al. Cross calibration over desert sites:description, methodology, and operational implementation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3):1098-1113. [87] RAO C R N, CHEN J, ZHANG N, et al. Calibration of meteorological satellite sensors[J]. Advances in Space Research, 1996, 17(1):11-20. [88] TEILLET P M, BARKER J L, MARKHAM B L, et al. Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets[J]. Remote Sensing of Environment, 2001, 78(1-2):39-54. [89] KIM W, HE Tao, WANG Dongdong, et al. Assessment of long-term sensor radiometric degradation using time series analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5):2960-2976. [90] XIONG Xiaoxiong, WU Aisheng, WENNY B N. Using Dome C for moderate resolution imaging spectroradiometer calibration stability and consistency[J]. Journal of Applied Remote Sensing, 2009, 3(1):033520. [91] HU Xiuqing, SUN Ling, LIU J, et al. Calibration for the solar reflective bands of medium resolution spectral imager onboard FY-3A[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(12):4915-4928. [92] KIEFFER H H. Photometric stability of the lunar surface[J]. Icarus, 1997, 130(2):323-327. [93] GRANDMONT F, MOREAU L, BOURQUE H, et al. Instrument demonstration effort for the CLARREO mission[C]//Proceedings of the SPIE 10565, International Conference on Space Optics-ICSO 2010. Rhodes Island, Greece:SPIE, 2017:1056512. [94] CUTTER M, FOX N, GREEN P, et al. Traceable radiometry underpinning terrestrial and heliostudies (TRUTHS):a bencmark mission for climate[M]. 2017:160. [95] BARRETO A, CUEVAS E, DAMIRI B, et al. A new method for nocturnal aerosol measurements with a lunar photometer prototype[J]. Atmospheric Measurement Techniques, 2013, 6(3):585-598. [96] 张璐, 张鹏, 胡秀清, 等. 月球辐射照度模型比对及地基对月观测验证[J]. 遥感学报, 2017, 21(6):864-870. ZHANG Lu, ZHANG Peng, HU Xiuqing, et al. Comparison of lunar irradiance models and validation of Lunar observation on Earth[J]. Journal of Remote Sensing, 2017, 21(6):864-870. [97] XIONG Xiaoxiong, SUN Junqiang, FULBRIGHT J, et al. Lunar calibration and performance for S-NPP VIIRS reflective solar bands[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2):1052-1061. [98] EPLEE JR R E, BARNES R A, PATT F S, et al. SeaWiFS lunar calibration methodology after six years on orbit[C]//Proceedings of the SPIE 5542, Earth Observing Systems IX. Denver, Colorado:SPIE, 2004:1. [99] 牛明慧, 陈福春, 陈桂林, 等. 静止轨道遥感仪器可见光通道月球定标方法研究[J]. 量子电子学报, 2019, 36(1):108-115. NIU Minghui, CHEN Fuchun, CHEN Guilin, et al. Research of lunar calibration for visible channel of geostationary remote sensing radiometer[J]. Chinese Journal of Quantum Electronics, 2019, 36(1):108-115. [100] 王阳. 地基对月成像光谱测量及月球辐射模型研究[D]. 长春:中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2018. WANG Yang. Study on ground-based spectral imaging measurement of the moon and lunar radiometric model[D]. Changchun:University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2018. [101] 张过, 管志超. 卫星成像质量可靠性研究初探[J]. 武汉大学学报(信息科学版), 2018, 43(12):1954-1961. ZHANG Guo, GUAN Zhichao. Primary research on reliability of satellite imaging quality[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):1954-1961. [102] 张过. 缺少控制点的高分辨率卫星遥感影像几何纠正[D]. 武汉:武汉大学, 2005. ZHANG Guo. Rectification for high resolution remote sensing image under lack of ground control points[D]. Wuhan:Wuhan University, 2005. [103] 刘楚斌. 高分辨率遥感卫星在轨几何定标关键技术研究[D]. 郑州:信息工程大学, 2012. LIU Chubin. Study on crucial technique of the on-orbit geometric calibration of high resolution satellite[D]. Zhengzhou:Information Engineering University, 2012. [104] 周晓. 合成孔径雷达外场定标实验方案与关键技术研究[D]. 北京:北京大学, 2014. ZHOU Xiao. Experimental scheme and key technology research on field calibration of synthetic aperture radar[D]. Beijing:Peking University, 2014. [105] SHIMADA M. Radiometric and geometric calibration of JERS-1 SAR[J]. Advances in Space Research, 1996, 17(1):79-88. [106] CURLANDER J C. Location of spaceborne SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1982, GE-20(3):359-364. [107] CURLANDER J C, MCDONOUGH R N. Synthetic aperture radar-systems and signal processing[M]. New York:John Wiley & Sons, Inc., 1991. [108] MADSEN S N, PANG S S. Improved geometric calibration of the Sir-C data[C]//Proceedings of Remote Sensing:Global Monitoring for Earth Management. Espoo, Finland:IEEE, 1991:1405-1410. [109] MOHR J J, MADSEN S N. Geometric calibration of ERS satellite SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(4):842-850. [110] LUSCOMBE A. Image quality and calibration of Radarsat-2[C]//Proceedings of IEEE International Geoscience and Remote Sensing Symposium. Cape Town, South Africa:IEEE, 2009:II-757-II-760. [111] SMALL D, ROSICH B, MEIER E, et al. 2004. Geometric calibration and validation of ASAR imagery[C]//Proceedings of CEOS SAR. Germany:[s.n.], 2004. [112] SCHWERDT M, SCHRANK D, BACHMANN M, et al. Calibration of the TerraSAR-X and the TanDEM-X satellite for the TerraSAR-X mission[C]//Proceedings of the 9th European Conference on Synthetic Aperture Radar. Nuremberg, Germany:IEEE, 2012:56-59. [113] SCHWERDT M, SCHMIDT K, TOUS RAMON N, et al. Independent verification of the Sentinel-1A system calibration[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(3):994-1007. [114] JEHLE M, PERLER D, SMALL D, et al. Estimation of atmospheric path delays in TerraSAR-X data using models vs. measurements[J]. Sensors, 2008, 8(12):8479-8491. [115] JIANG Yonghua, ZHANG Guo. Research on the methods of inner calibration of spaceborne SAR[C]//Proceedings of 2011 IEEE International Geoscience and Remote Sensing Symposium. Vancouver, Canada:IEEE, 2011:914-916. [116] ZHAO Ruishan, ZHANG Guo, DENG Mingjun, et al. Geometric calibration and accuracy verification of the GF-3 satellite[J]. Sensors, 2017, 17(9):1977. [117] 邓明军, 张过, 赵瑞山, 等. 顾及大气延迟效应的YG-13A斜距标定[J]. 遥感学报, 2018, 22(3):373-380. DENG Mingjun, ZHANG Guo, ZHAO Ruishan, et al. Application of the atmospheric delay correction model in YG-13A range calibration[J]. Journal of Remote Sensing, 2018, 22(3):373-380. [118] 吕冠南, 唐新明, 艾波, 等. 稀少控制的多平台星载SAR联合几何定标方法[J]. 测绘学报, 2018, 47(7):986-995. DOI:10.11947/j.AGCS.2018.20170283. LÜ Guannan, TANG Xinming, AI Bo, et al. Hybrid geometric calibration method for multi-platform spaceborne SAR image with sparse GCPs[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(7):986-995. DOI:10.11947/j.AGCS.2018.20170283. [119] DENG Mingjun, ZHANG Guo, ZHAO Ruishan, et al. Improvement of GaoFen-3 absolute positioning accuracy based on cross-calibration[J]. Sensors, 2017, 17(12):2903. [120] ZHANG Guo, DENG Mingjun, CAI Chenglin, et al. Geometric self-calibration of YaoGan-13 images using multiple overlapping images[J]. Sensors, 2019, 19(10):2367. [121] 洪峻, 明峰, 胡继伟. 星载SAR天线方向图在轨测量技术发展现状与趋势[J]. 雷达学报, 2012, 1(3):217-224. HONG Jun, MING Feng, HU Jiwei. Current situation and development trend of inflight antenna pattern measurement techniques of spaceborne SAR[J]. Journal of Radars, 2012, 1(3):217-224. [122] SHIMADA M, FREEMAN A. A technique for measurement of spaceborne SAR antenna patterns using distributed targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(1):100-114. [123] HAWKINS R K. Determination of antenna elevation pattern for airborne SAR using the rough target approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(5):896-905. [124] ERNST C, MAYAUX P, VERHEGGHEN A, et al. National forest cover change in Congo Basin:deforestation, reforestation, degradation and regeneration for the years 1990, 2000 and 2005[J]. Global Change Biology, 2013, 19(4):1173-1187. [125] FREEMAN A, ALVES M, CHAPMAN B, et al. SIR-C data quality and calibration results[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4):848-857. [126] FANG Yujun, MOORE R K. Inflight vertical antenna patterns for SIR-C from Amazon rain-forest observations[C]//Proceedings of International Geoscience and Remote Sensing Symposium. Lincoln, NE:IEEE, 1996:496-498. [127] MOORE R K, REDIAWAN H. Further analysis of SIR-C antenna patterns for radiometric corrections:use of new calibration areas[C]//Proceedings of 1999 International Geoscience and Remote Sensing Symposium. Hamburg, Germany:IEEE, 1999:437-439. [128] LUKOWSKI T I, HAWKINS R K, CLOUTIER C, et al. Radarsat elevation antenna pattern determination[C]//Proceedings of 1997 IEEE International Geoscience and Remote Sensing. Singapore:IEEE, 1997:1382-1384. [129] LUSCOMBE A P, THOMPSON A. Radarsat-2 calibration:proposed targets and techniques[C]//Proceedings of 2001 IEEE International Geoscience and Remote Sensing Symposium Scanning the Present and Resolving the Future. Sydney, NSW, Australia:IEEE, 2001:496-498. [130] TOUZI R, HAWKINS R K, COTE S. High-precision assessment and calibration of polarimetric Radarsat-2 SAR using transponder measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1):487-503. [131] SCHWERDT M, BRAUTIGAM B, BACHMANN M, et al. Final TerraSAR-X calibration results based on novel efficient methods[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2):677-689. [132] SCHWERDT M, HOUNAM D, ALVAREZ-PōRES J L, et al. The calibration concept of TerraSAR-X:a multiple-mode, high-resolution SAR[J]. Canadian Journal of Remote Sensing, 2005, 31(1):30-36. [133] 林捷. 星载合成孔径雷达天线方向图在轨测试技术研究[D]. 北京:中国科学院电子学研究所, 2001. LIN Jie. Study on in-orbit test technology of antenna pattern of spaceborne synthetic aperture radar (SAR)[D]. Beijing:Institute of Electrics, Chinese Academy of Sciences, 2001. [134] 王晓林. 星载SAR天线方向图在轨测试——地面发射机测量方法研究[D]. 北京:中国科学院电子学研究所, 2005. WANG Xiaolin. Spaceborne SAR antenna pattern in orbit test:study on measurement method of ground transmitter[D]. Beijing:Institute of Electrics, Chinese Academy of Sciences, 2005. [135] 云日升, 郭伟. 亚马逊热带雨林星载SAR天线方向图获取与应用[C]//微波遥感技术研讨会. 深圳:中国空间科学学会遥感分会, 2006:301-306. YUN Risheng, GUO Wei. Acquisition and application of amazon tropic rain forest spaceborne SAR antenna pattern[C]//(Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190, China). Shenzhen:Remote Sensing Branch of Chinese Society of Space Science, 2006:301-306. [136] GUCCIONE P, SCAGLIOLA M, GIUDICI D. Low-frequency SAR radiometric calibration and antenna pattern estimation by using stable point targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2):635-646. [137] GIUDICI D, VILLA A, RECCHIA L, et al. Long term PS-CAL analysis of ERS and ASAR data and comparison to other calibration techniques[C]//Proceedings of the 10th European Conference on Synthetic Aperture Radar. Berlin, Germany:IEEE, 2014. [138] EIMANN J, SCHWERDT M, SCHMIDT K, et al. The DLR SAR calibration center[C]//Proceedings of the 5th Asia-Pacific Conference on Synthetic Aperture Radar. Singapore:IEEE, 2015. [139] BIRRER I J, BRACALENTE E M, DOME G J, et al. σ° signature of the Amazon rain forest obtained from the Seasat scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 1982, GE-20(1):11-17. [140] LUSCOMBE A. Radiometric calibration information from Radarsat-1 Amazon measurements[C]//Proceedings of the 2001 CEOS SAR Workshop. Tokyo, Japan:[s.n.], 2001. [141] BHOWMICK S A, KUMAR R, KUMAR A S K. Cross calibration of the Oceansat-2 scatterometer with QuikSCAT scatterometer using natural terrestrial targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6):3393-3398. [142] RIDLEY J, STRAWBRIDGE F, CARD R, et al. Radar backscatter characteristics of a desert surface[J]. Remote Sensing of Environment, 1996, 57(2):63-78. [143] HORSTMANN J, LEHNER S. A new method for radiometric calibration of spaceborne SAR and its global monitoring[C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium. Toronto, ON, Canada:IEEE, 2002. [144] RIZZOLI P, GIUDICI D, D'ARIA D, et al. Permanent scatterers for SAR sensor calibration[C]//Proceedings of the 7th European Conference on Synthetic Aperture Radar. Friedrichshafen, Germany:IEEE, 2008. [145] D'ARIA D, FERRETTI A, MONTI GUARNIERI A, et al. SAR calibration aided by permanent scatterers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4):2076-2086. [146] IANNINI L, MONTI GUARNIERI A. A PS-based approach for the calilbration of spaceborne polarimetric SAR systems[C]//Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium. Munich, Germany:IEEE, 2012. [147] YANG Jintao, QIU Xiaolan, DING Chibiao, et al. Identification of stable backscattering features, suitable for maintaining absolute synthetic aperture radar (SAR) radiometric calibration of sentinel-1[J]. Remote Sensing, 2018, 10(7):1010. |
[1] | 李国元, 唐新明, 周晓青, 卢刚, 陈继溢, 黄庚华, 高小明, 刘诏, 欧阳斯达. 高分七号卫星激光测高仪无场几何定标法[J]. 测绘学报, 2022, 51(3): 401-412. |
[2] | 周苗, 常晓涛, 朱广彬, 瞿庆亮, 刘伟. 卫星重力与光学遥感组合的念青唐古拉山脉冰川变化分析[J]. 测绘学报, 2021, 50(10): 1331-1337. |
[3] | 徐伟伟, 张黎明, 李鑫, 杨宝云. 高分辨率光学遥感卫星反射点源像点提取方法[J]. 测绘学报, 2020, 49(10): 1295-1302. |
[4] | 皮英冬, 谢宝蓉, 杨博, 张昳玲, 李欣, 王密. 利用稀少控制点的线阵推扫式光学卫星在轨几何定标方法[J]. 测绘学报, 2019, 48(2): 216-225. |
[5] | 吕冠南, 唐新明, 艾波, 李涛, 陈乾福. 稀少控制的多平台星载SAR联合几何定标方法[J]. 测绘学报, 2018, 47(7): 986-995. |
[6] | 张过, 李立涛. 遥感25号无场化相对辐射定标[J]. 测绘学报, 2017, 46(8): 1009-1016. |
[7] | 韩杰, 谢勇. 星载多相机拼接成像传感器在轨辐射定标方法[J]. 测绘学报, 2017, 46(11): 1830-1840. |
[8] | 龚健雅, 王密, 杨博. 高分辨率光学卫星遥感影像高精度无地面控制精确处理的理论与方法[J]. 测绘学报, 2017, 46(10): 1255-1261. |
[9] | 王密, 程宇峰, 常学立, 龙小祥, 李庆鹏. 高分四号静止轨道卫星高精度在轨几何定标[J]. 测绘学报, 2017, 46(1): 53-61. |
[10] | 韩杰, 谢勇. GF-1卫星WFV影像间匀色方法[J]. 测绘学报, 2016, 45(12): 1423-1433. |
[11] | 曹金山 袁修孝 龚健雅 段梦梦. 资源三号卫星成像在轨几何定标的探元指向角法[J]. 测绘学报, 2014, 43(10): 1039-1045. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||