测绘学报 ›› 2020, Vol. 49 ›› Issue (12): 1600-1608.doi: 10.11947/j.AGCS.2020.20190461

• 摄影测量学与遥感 • 上一篇    下一篇

高光谱图像混合像元多维卷积网络协同分解法

刘帅1,2, 邢光龙1,2   

  1. 1. 燕山大学信息科学与工程学院, 河北 秦皇岛 066004;
    2. 河北省信息传输与信号处理重点实验室, 河北 秦皇岛 066004
  • 收稿日期:2019-11-08 修回日期:2020-07-24 发布日期:2020-12-25
  • 通讯作者: 邢光龙 E-mail:xinggl@ysu.edu.cn
  • 作者简介:刘帅(1982-),男,博士,讲师。研究方向为遥感信息处理、分析与应用。E-mail:liushuai@ysu.edu.cn
  • 基金资助:
    国家自然科学基金(61671401);河北省高等学校科学技术研究项目(QN2017146)

Multi-dimensional convolutional network collaborative unmixing method for hyperspectral image mixed pixels

LIU Shuai1,2, XING Guanglong1,2   

  1. 1. School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China;
    2. Hebei Key Laboratory of Information Transmission and Signal Processing, Qinhuangdao 066004, China
  • Received:2019-11-08 Revised:2020-07-24 Published:2020-12-25
  • Supported by:
    The National Natural Science Foundation of China (No. 61671401);The Science and Technology Research Project of Hebei Higher Education Institutions (No. QN2017146)

摘要: 受成像光谱仪性能与复杂地物分布的影响,高光谱图像存在大量的混合像元。传统的基于学习的混合像元分解方法通常都是浅层模型,或缺少对空间、光谱信息的综合应用。本文提出一种多维卷积网络协同的混合像元分解深层模型,采用多种维度卷积网络能更充分利用多种维度语义信息,有利于估计小样本和高维的高光谱图像混合像元丰度。对训练数据进行增广处理,构建光谱维、空间维和立方体3种卷积神经网络;设计了融合层,协同3种卷积神经网络提取特征,“端到端”的估计混合像元丰度值;模型使用了批量归一化、池化和Dropout方法避免过拟合现象。试验结果表明,多维卷积网络协同方法的引入能更有效地提取空-谱特征信息,与其他的卷积网络解混模型相比,估计的混合像元丰度精度有显著提高。

关键词: 高光谱解混, 卷积神经网络, 深度学习, 丰度估计

Abstract: Influenced by the performance of imaging spectrometer and the distribution of complex ground objects, hyperspectral images have a large number of mixed pixels. Traditional learning-based unmixing methods are shallow models, or lack of comprehensive use of spatial and spectral information. This paper proposes a collaborative deep model with multi-dimensional convolutional network. Using multi-dimensional convolutional network can make full use of multi-dimensional semantic information, which is better to estimate hyperspectral mixed pixel abundance with small samples. The method augments training data, constructs three kinds of convolutional neural networks: spectral dimension, spatial dimension and cube dimension; the method designs fusion layer to concatenate features with three kinds of convolutional neural networks, and to “end-to-end” estimate of mixed pixel abundance; the model uses batch normalization, pooling and dropout to avoid over fitting phenomenon. The experimental results indicate that the introduction of our proposed method can extract spatial-spectral feature information more effectively. Compared with other convolutional network unmixing models, the accuracy of the estimated mixed pixel abundance is significantly improved.

Key words: hyperspectral unmixing, convolutional neural network, deep learning, abundance estimation

中图分类号: