[1] 张良培, 武辰. 多时相遥感影像变化检测的现状与展望[J]. 测绘学报, 2017, 46(10):1447-1459. DOI:10.11947/j.AGCS.2017.20170340. ZHANG Liangpei, WU Chen. Advance and future development of change detection for multi-temporal remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1447-1459. DOI:10.11947/j.AGCS.2017.20170340. [2] COPPIN P, JONCKHEERE I, NACKAERTS K, et al. Review article digital change detection methods in ecosystem monitoring:a review[J]. International Journal of Remote Sensing, 2004, 25(9):1565-1596. [3] 佟国峰, 李勇, 丁伟利, 等. 遥感影像变化检测算法综述[J]. 中国图象图形学报, 2015, 20(12):1561-1571. TONG Guofeng, LI Yong, DING Weili, et al. Review of remote sensing image change detection[J]. Journal of Image and Graphics, 2015, 20(12):1561-1571. [4] 李亮, 舒宁, 王凯, 等. 融合多特征的遥感影像变化检测方法[J]. 测绘学报, 2014, 43(9):945-953, 959. LI Liang, SHU Ning, WANG Kai, et al. Change detection method for remote sensing images based on multi-features fusion[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(9):945-953, 959. [5] 赵敏, 赵银娣. 面向对象的多特征分级CVA遥感影像变化检测[J]. 遥感学报, 2018, 22(1):119-131. ZHAO Min, ZHAO Yindi. Object-oriented and multi-feature hierarchical change detection based on CVA for high-resolution remote sensing imagery[J]. Journal of Remote Sensing, 2018, 22(1):119-131. [6] IM J, JENSEN J R, TULLIS J A. Object-based change detection using correlation image analysis and image segmentation[J]. International Journal of Remote Sensing, 2008, 29(2):399-423. [7] 眭海刚, 冯文卿, 李文卓, 等. 多时相遥感影像变化检测方法综述[J]. 武汉大学学报(信息科学版), 2018, 43(12):1885-1898. SUI Haigang, FENG Wenqing, LI Wenzhuo, et al. Review of change detection methods for multi-temporal remote sensing imagery[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):1885-1898. [8] BRUZZONE L, PRIETO D F. Automatic analysis of the difference image for unsupervised change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(3):1171-1182. [9] BAYARJARGAL Y, KARNIELI A, BAYASGALAN M, et al. A comparative study of NOAA-AVHRR derived drought indices using change vector analysis[J]. Remote Sensing of Environment, 2006, 105(1):9-22. [10] PENG Daifeng, ZHANG Yongjun, GUAN Haiyan. End-to-end change detection for high resolution satellite images using improved UNet++[J]. Remote Sensing, 2019, 11(11):1382. [11] MOU Lichao, BRUZZONE L, ZHU Xiao xiang. Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2):924-935. [12] MESQUITA D B, SANTOS R F D, MACHARET D G, et al. Fully convolutional Siamese autoencoder for change detection in UAV aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(8):1455-1459. [13] 张鑫龙, 陈秀万, 李飞, 等. 高分辨率遥感影像的深度学习变化检测方法[J]. 测绘学报, 2017, 46(8):999-1008. DOI:10.11947/j.AGCS.2017.20170036. ZHANG Xinlong, CHEN Xiuwan, LI Fei, et al. Change detection method for high resolution remote sensing images using deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(8):999-1008. DOI:10.11947/j.AGCS.2017.20170036. [14] 金秋含, 王阳萍, 杨景玉. 基于密度引力和多尺度多特征融合的遥感影像变化检测[J]. 激光与光电子学进展, 2019, 56(12):71-80. JIN Qiuhan, WANG Yangping, YANG Jingyu. Remote sensing image change detection based on density attraction and multi-scale and multi-feature fusion[J]. Laser & Optoelectronics Progress, 2019, 56(12):71-80. [15] IM J, JENSEN J R. A change detection model based on neighborhood correlation image analysis and decision tree classification[J]. Remote Sensing of Environment, 2005, 99(3):326-340. [16] LI Zhenxuan, SHI Wenzhong, HAO Ming, et al. Unsupervised change detection using spectral features and a texture difference measure for VHR remote-sensing images[J]. International Journal of Remote Sensing, 2017, 38(23):7302-7315. [17] LÜ Zhiyong, LIU Tongfei, SHI Cheng, et al. Novel land cover change detection method based on k-means clustering and adaptive majority voting using bitemporal remote sensing images[J]. IEEE Access, 2019, 7:34425-34437. [18] LÜ Zhiyong, LIU Tongfei, ZHANG Penglin, et al. Novel adaptive histogram trend similarity approach for land cover change detection by using bitemporal very-high-resolution remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12):9554-9574. [19] LÜ Zhiyong, LIU Tongfei, ZHANG Penglin, et al. Land cover change detection based on adaptive contextual information using Bi-temporal remote sensing images[J]. Remote Sensing, 2018, 10(6):901. [20] YE Yuanxin, BRUZZONE L, SHAN Jie, et al. Fast and robust matching for multimodal remote sensing image registration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11):9059-9070. [21] ZHANG Xiaokang, SHI Wenzhong, HAO Ming, et al. Level set incorporated with an improved MRF model for unsupervised change detection for satellite images[J]. European Journal of Remote Sensing, 2017, 50(1):202-210. [22] 许妙忠, 丛铭, 万丽娟, 等. 视觉感受与Markov随机场相结合的高分辨率遥感影像分割法[J]. 测绘学报, 2015, 44(2):198-205, 213. DOI:10.11947/j.AGCS.2015.20130453. XU Miaozhong, CONG Ming, WAN Lijuan, et al. A methodology of image segmentation for high resolution remote sensing image based on visual system and Markov random field[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(2):198-205, 213. DOI:10.11947/j.AGCS.2015.20130453. [23] 王琰, 舒宁, 龚龑. 利用马尔可夫随机场图模型的变化像斑类别判定方法[J]. 武汉大学学报(信息科学版), 2012, 37(5):542-545, 632. WANG Yan, SHU Ning, GONG Yan. Determination of new class properties of the changed image segments using MRF graph model[J]. Geomatics and Information Science of Wuhan University, 2012, 37(5):542-545, 632. [24] 范奎奎, 王中元, 欧阳斯达, 等. DT-CWT结合MRF的遥感图像变化检测[J]. 遥感学报, 2017, 21(3):375-385. FAN Kuikui, WANG Zhongyuan, OUYANG Sida, et al. Change detection of remote sensing images through DT-CWT and MRF[J]. Journal of Remote Sensing, 2017, 21(3):375-385. [25] HE Pengfei, SHI Wenzhong, MIAO Zelang, et al. Advanced Markov random field model based on local uncertainty for unsupervised change detection[J]. Remote Sensing Letters, 2015, 6(9):667-676. |