[1] 刘先林.为社会进步服务的测绘高新技术[J].测绘科学, 2019, 44(6):1-15. LIU Xianlin. High technologies of surveying and mapping for social progress[J]. Science of Surveying and Mapping, 2019, 44(6):1-15. [2] 李德仁,肖雄武,郭丙轩,等.倾斜影像自动空三及其在城市真三维模型重建中的应用[J].武汉大学学报(信息科学版), 2016, 41(6):711-721. LI Deren, XIAO Xiongwu, GUO Bingxuan, et al. Oblique image based automatic Aerotriangulation and its application in 3D city model reconstruction[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6):711-721. [3] GUERCKE R, GÖTZELMANN T, BRENNER C, et al. Aggregation of LoD 1 building models as an optimization problem[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(2):209-222. [4] KOLBE T H, GRÖGER G, PLÜMER L. CityGML:interoperable access to 3D city models[M]//VAN OOSTEROM P, ZLATANOVA S, FENDEL E M. Geo-information for Disaster Management. Berlin:Springer, 2005:883-899. [5] 杜福光.基于ArcScene城市三维可视化研究与应用[D].西安:西安科技大学, 2010. DU Fuguang. Research and application of urban three-dimensional visualization based on ArcScene[D]. Xi'an:Xi'an University of Science and Technology, 2010. [6] 郭仁忠,艾廷华.制图综合中建筑物多边形的合并与化简[J].武汉测绘科技大学学报, 2000, 25(1):25-30. GUO Renzhong, AI Tinghua. Simplification and aggregation of building polygon in automatic map generalization[J].Journal of Wuhan Technical University of Surveying and Mapping, 2000, 25(1):25-30. [7] DULGHERU F V. Algorithms for map generalization with ArcGIS software[C]//Proceedings of 2011 International Conference of Scientific Paper Afases. Brasov, Romania:[s.n.], 2011:596-599. [8] 郭建忠,谢明霞,李柱林.基于线缓冲区分析的街区合并方法[J].地理与地理信息科学, 2011, 27(6):111-112. GUO Jianzhong, XIE Mingxia, LI Zhulin. Block aggregation based on line buffer analysis[J]. Geography and Geo-Information Science, 2011, 27(6):111-112. [9] AI Tinghua, YIN Hongmei, SHEN Yilang, et al. A formal model of neighborhood representation and applications in urban building aggregation supported by Delaunay triangulation[J]. PLoS One, 2019, 14(7):2188-2207. [10] 黄诠,刘浩,梁平元. Delaunay三角网的并行构网算法[J].测绘科学, 2017, 42(6):171-177. HUANG Quan, LIU Hao, LIANG Pingyuan. Parallel construction algorithm of delaunay triangulated irregular network[J]. Science of Surveying and Mapping, 2017, 42(6):171-177. [11] LEE D T, SCHACHTER B J. Two algorithms for constructing a Delaunay triangulation[J]. International Journal of Computer&Information Sciences, 1980, 9(3):219-242. [12] 黄继风.基于Delaunay三角网的城市多边形合并算法[J].计算机工程与设计, 2004, 25(7):1220-1222. HUANG Jifeng. Urban polygon aggregation algorithms based on Delaunay trigonometry network[J]. Computer Engineering and Design, 2004,25(7):1220-1222. [13] 钱海忠,武芳.基于Delaunay三角关系的面状要素合并方法[J].测绘学院学报, 2001, 18(3):207-209. QIAN Haizhong, WU Fang. A merge operation for area objects based on Delaunay triangle-interpolating[J]. Journal of Institute of Surveying and Mapping, 2001, 18(3):207-209. [14] 郭沛沛,李成名,殷勇.建筑物合并的Delaunay三角网分类过滤法[J].测绘学报, 2016, 45(8):1001-1007. DOI:10.11947/j.AGCS.2016.20150587. GUO Peipei, LI Chengming, YIN Yong. Classification and filtering of constrained Delaunay triangulation for automated building aggregation[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(8):1001-1007.DOI:10.11947/j.AGCS.2016.20150587. [15] HE Xianjin, ZHANG Xinchang, YANG Jie. Progressive amalgamation of building clusters for map generalization based on scaling subgroups[J]. ISPRS International Journal of Geo-Information, 2018, 7(3):116-131. [16] HE Xianjin, ZHANG Xinchang, XIN Qinchuan. Recognition of building group patterns in topographic maps based on graph partitioning and random forest[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 136:26-40. [17] AI Tinghua, ZHANG Xiang. The aggregation of urban building clusters based on the skeleton partitioning of gap space[M]//FABRIKANT S I, WACHOWICZ M. The European Information Society:Leading the Way with Geo-information. Berlin:Springer, 2007:153-170. [18] 程博艳,刘强,李小文.一种建筑物群智能聚类法[J].测绘学报, 2013, 42(2):290-294, 330. CHENG Boyan, LIU Qiang, LI Xiaowen. Intelligent building grouping using a self-organizing map[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(2):290-294, 330. [19] BASARANER M, SELCUK M. A structure recognition technique in contextual generalisation of buildings and built-up areas[J]. The Cartographic Journal, 2008, 45(4):274-285. [20] 钱海忠,武芳,谭笑,等.基于ABTM的城市建筑物合并算法[J].中国图象图形学报, 2005, 10(10):1224-1233. QIAN Haizhong, WU Fang, TAN Xiao, et al. The algorithm for merging city buildings based on ABTM[J]. Journal of Image and Graphics, 2005, 10(10):1224-1233. [21] PENG Dongliang, TOUYA G. Continuously generalizing buildings to built-up areas by aggregating and growing[C]//Proceedings of the 3rd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics. Redondo Beach, CA:Association for Computing Machinery, 2017:210-225. [22] 许文帅,龙毅,周侗,等.面向复杂多边形合并的视觉邻近探测与缝合算法[J].地理与地理信息科学, 2014, 30(1):125-126. XU Wenshuai, LONG Yi, ZHOU Dong, et al. Visual proximity detection and stitching algorithm for complex polygon merging[J]. Geography and Geo-Information Science, 2014, 30(1):125-126. [23] 毋河海. GIS与地图信息综合基本模型与算法[M].武汉:武汉大学出版社, 2012. WU Hehai. Basic model and algorithm of GIS and map generalization[M]. Wuhan:Wuhan University Press, 2012. [24] 郭庆胜,魏智威,王勇,等.特征分类与邻近图相结合的建筑物群空间分布特征提取方法[J].测绘学报, 2017, 46(5):631-638. DOI:10.11947/j.AGCS.2017.20160374. GUO Qingsheng, WEI Zhiwei, WANG Yong, et al. The method of extracting spatial distribution characteristics of buildings combined with feature classification and proximity graph[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(5):631-638. DOI:10.11947/j.AGCS.2017.20160374. [25] 程博艳.基于神经网络的地图建筑物要素智能综合研究[D].成都:电子科技大学, 2014. CHENG Boyan. Research on ann-based map intelligent generalization for buildings[D].Chengdu:University of Electronic Science and Technology of China, 2014. [26] SHEN Yilang, AI Tinghua, LI Wende, et al. A polygon aggregation method with global feature preservation using superpixel segmentation[J]. Computers, Environment and Urban Systems, 2019, 75:117-131. [27] 郭庆胜,丁虹,刘浩,等.面状目标之间空间拓扑关系的组合式分类[J].武汉大学学报(信息科学版), 2005, 30(8):728-731. GUO Qingsheng, DING Hong, LIU Hao, et al. Combinational reasoning of spatial topological relations between two areas based on basic spatial relations[J]. Geomatics and Information Science of Wuhan University, 2005, 30(8):728-731. [28] LI Zhilin, OPENSHAW S. Algorithms for automated line generalization based on a natural principle of objective generalization[J]. International Journal of Geographical Information Systems, 1992, 6(5):373-389. [29] MULLER J C. Optimum point density and compaction rates for the representation of geographic lines[C]//Proceedings of 1987 International Symposium on Computer-Assisted Cartography. Baltimore, Maryland:[s.n.], 1987:221-230. |