[1] TRENBERTH K E, FASULLO J, SMITH L. Trends and variability in column-integrated atmospheric water vapor[J]. Climate Dynamics, 2005, 24(7-8):741-758. [2] 姚宜斌, 张顺, 孔建. GNSS空间环境学研究进展和展望[J]. 测绘学报, 2017, 46(10):1408-1420. YAO Yibin, ZHANG Shun, KONG Jian. Research progress and prospect of GNSS space environment science[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1408-1420. [3] KING M D, KAUFMAN Y J, MENZEL W P, et al. Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS)[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(1):2-27. [4] 陈永奇, 刘焱雄, 王晓亚, 等. 香港实时GPS水汽监测系统的若干关键技术[J]. 测绘学报, 2007, 36(1):9-12. CHEN Yongqi, LIU Yanxiong, WANG Xiaoya, et al. GPS real-time estimation of precipitable water vapor-Hong Kong experiences[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(1):9-12. [5] 黄良珂, 彭华, 刘立龙, 等. 顾及垂直递减率函数的中国区域大气加权平均温度模型[J]. 测绘学报, 2020, 49(4):432-442. HUANG Liangke, PENG Hua, LIU Lilong, et al. An empirical atmospheric mean temperature model considering the lapse rate function for China[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(4):432-442. [6] YAO Yibin,SUN Zhangyu,XU Chaoqian.Applicability of Bevis formula at different height levels and global weighted mean temperature model based on near-earth atmospheric temperature[J].Journal of Geodesy and Geoinformation Science,2020,3(1):1-11. [7] 施闯, 张卫星,曹云昌,等.基于北斗/GNSS的中国-中南半岛地区大气水汽气候特征及同降水的相关分析[J].测绘学报, 2020,49(9):1112-1119. SHI Chuang,ZHANG Weixing,CAO Yunchang,et al. Atmospheric water vapor climatological characteristics over Indo-China region based on BeiDou/GNSS and relationships with precipitation[J].Acta Geodaetica et Cartographica Sinica,2020, 49(9):1112-1119. [8] 刘备,王勇,娄泽生,等. CMONOC观测约束下的中国大陆地区MODISPWV校正[J]. 测绘学报, 2019, 48(10):1207-1215. LIU Bei,WANG Yong,LOU Zesheng,et al. The MODISPWV correction based on CMONOC in Chinese mainland[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(10):1207-1215. [9] ZHANG Y, CAI C, CHEN B, et al. Consistency evaluation of precipitable water vapor derived from ERA5, ERA-Interim, GNSS, and radiosondes over China[J]. Radio Science, 2019, 54. [10] SSENYUNZI R C, ORURU B, D'UJANGA F M, et al. Performance of ERA5 data in retrieving precipitable water vapour over East African tropical region[J]. Advances in Space Research, 2020, 65(8):1877-1893. [11] WANG S, XU T, NIE W, et al. Evaluation of precipitable water vapor from five reanalysis products with ground-based GNSS observations[J]. Remote Sensing, 2020, 12, 1817. [12] FRAUENFELD O W, ZHANG T, SERREZE M C. Climate change and variability using european centre for medium-range weather forecasts reanalysis (ERA-40) temperatures on the Tibetan Plateau[J]. Journal of Geophysical Research:Atmospheres, 2005, 110, D02101. [13] 姚宜斌, 雷祥旭, 张良, 等. 青藏高原地区1979~2014年大气可降水量和地表温度时空变化特征分析[J]. 科学通报, 2016, 61:1462-1477. YAO Yibin, LEI Xiangxu, ZHANG Liang, et al. Analysis of precipitable water vapor and surface temperature variation over Qinghai-Tibetan Plateau from 1979 to 2014[J]. Chinese Science Bulletin, 2016, 61:1462-1477. [14] PARRACHO A C, BOCK O, BASTIN S. Global IWV trends and variability in atmospheric reanalyses and GPS observations[J]. Atmospheric Chemistry and Physics, 2018, 18(22):16213-16237. [15] WANG J, ZHANG L. Climate applications of a global, 2-hourly atmospheric precipitable water dataset derived from IGS tropospheric products[J]. Journal of Geodesy, 2009, 83:209-217. [16] ONN F, ZEBKER H A. Correction for interferometric synthetic aperture radar atmospheric phase artifacts using time series of zenith wet delay observations from a GPS network[J]. Journal of Geophysical Research-Solid Earth, 2006, 111:B09102. [17] ZHAO Q, YANG P, YAO W, et al. Hourly PWV dataset derived from GNSS observations in China[J]. Sensors, 2020, 20:231. [18] ZHANG B, YAO Y, XIN L, et al. Precipitable water vapor fusion:an approach based on spherical capharmonic analysis and Helmert variance component estimation[J]. Journal of Geodesy, 2019, 93:2605-2620. [19] LI X, LONG D. An improvement in accuracy and spatiotemporal continuity of the MODIS precipitable water vapor product based on a data fusion approach[J]. Remote Sensing of Environment, 2020, 248:111966. [20] CHEN B, DAI W, LIU Z, et al. Constructing a precipitable water vapor map from regional GNSS network observations without collocated meteorological data for weather forecasting[J]. Atmospheric Measurement Techniques, 2018, 11:5153-5166. [21] 张豹, 姚宜斌, 许超钤. 一种可用于估计全球水汽标高的经验模型[J]. 测绘学报, 2015, 44(10):1085-1091. ZHANG Bao, YAO Yibin, XU Chaoqian. Global empirical model for estimating water vapor scale height[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(10):1085-1091. [22] REITAN C H. Surface dew point and water vapor aloft[J]. Journal of Applied Meteorology, 1963, 2(6):776-779. [23] LECKNER B. The spectral distribution of solar radiation at the earth's surface-elements of a model[J]. Solar Energy, 1978, 20:143-150. [24] KOUBA J. Implementation and testing of the gridded Vienna mapping function 1(VMF1)[J].Journal of Geodesy,2008, 82:193-205. [25] EMARDSON TR, JOHANSSON JM. Spatial interpolation of the atmospheric water vapor content between sites in a ground-based GPS network[J]. Geophysical Research Letters, 1998, 25(17):3347-3350. [26] DOUSA J, ELIAS M. An improved model for calculating tropospheric wet delay[J]. Geophysical Research Letters, 2014, 41:4389-4397. [27] ZHANG H, YUAN Y, LI W, et al. A real-time precipitable water vapor monitoring system using the national GNSS network of China:method and preliminary results[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(5):1587-1598. [28] GUI K, CHE H, CHEN Q, et al. Evaluation of radiosonde, MODIS-NIR-Clear, and AERONET precipitable water vapor using IGS ground-based GPS measurements over China[J]. Atmospheric Research, 2017, 197:461-473. [29] TOMASI C. Determination of the total precipitable water by varying the intercept in Reitan's relationship[J]. Journal of Applied Meteorology, 1981, 20(9):1058-1069. [30] 李超, 魏合理, 王珍珠, 等. 合肥地区大气水汽标高变化特征的统计研究[J]. 大气与环境光学学报, 2008, 3(2):115-120. LI Chao, WEI Heli, WANG Zhenzhu, et al. Statistical study on the scale height of atmospheric water vapor in Hefei region[J]. Journal of Atmospheric and Environmental Optics, 2008, 3(2):115-120. [31] ZHANG W, LOU Y, HUANG J, et al. Multiscale variations of precipitable water over China based on 1999-2015 ground-based GPS observations and evaluations of reanalysis products[J]. Journal of Climate, 2018, 31(3):945-962. [32] ZHANG W, ZHANG H, LIANG H, et al. On the suitability of ERA5 in hourly GPS precipitable water vapor retrieval over China[J]. Journal of Geodesy, 2019, 93(10):1897-1909. |