测绘学报 ›› 2021, Vol. 50 ›› Issue (11): 1500-1511.doi: 10.11947/j.AGCS.2021.20210266

• 智能驾驶环境感知 • 上一篇    下一篇

用于智能驾驶的动态场景视觉显著性多特征建模方法

詹智成1,2, 董卫华1   

  1. 1. 北京师范大学地理科学学部, 北京 100875;
    2. 根特大学地理学院, 比利时 根特 9000
  • 收稿日期:2021-05-13 修回日期:2021-09-28 发布日期:2021-12-07
  • 通讯作者: 董卫华 E-mail:dongweihua@bnu.edu.cn
  • 作者简介:詹智成(1994—),男,博士生,研究方向为地理信息系统和地理空间认知。
  • 基金资助:
    国家自然科学基金(41871366);国家留学基金委项目资助(201906040236);地理信息工程国家重点实验室、自然资源部测绘科学与地球空间信息技术重点实验室联合资助基金(2021-04-03)

A multi-feature approach for modeling visual saliency of dynamic scene for intelligent driving

ZHAN Zhicheng1,2, DONG Weihua1   

  1. 1. Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China;
    2. Department of Geography, Ghent University, Ghent 9000, Belgium
  • Received:2021-05-13 Revised:2021-09-28 Published:2021-12-07
  • Supported by:
    The National Natural Science Foundation of China (No. 41871366);The China Scholarship Council (No. 201906040236);The State Key Laboratory of Geographic Information Engineering and the Key Laboratory of Surveying and Mapping Science and Geospatial Information Technology of the Ministry of Natural Resources Jointly Funded Project (No. 2021-04-03)

摘要: 驾驶场景的视觉显著性建模是智能驾驶的重要研究方向。现有的静态和虚拟场景的视觉显著性建模方法不能适应真实驾驶环境下道路场景实时性、动态性和任务驱动特性。构建真实驾驶环境的动态场景视觉显著性模型是目前研究的挑战。从驾驶环境的特点与驾驶员的视觉认知规律出发,本文提取道路场景的低级视觉特征、高级视觉特征和动态视觉特征,并结合速度和道路曲率两个重要影响因素,建立了多特征逻辑回归模型(logistic regression,LR)计算驾驶场景视觉显著性。使用AUC值对模型进行评价,结果显示精度达到了90.43%,与传统的算法相比具有明显的优势。

关键词: 视觉显著性, 驾驶场景, 驾驶环境, 动态性

Abstract: Visual saliency modeling of driving scenes is an important research direction in intelligent driving, especially in the areas of assisted driving and automatic driving. The existing visual saliency modeling methods for static and virtual scenes cannot adapt to the real-time, dynamic and task-driven characteristics of road scenes in real driving environments. Building a visual saliency model of dynamic road scenes in real driving environments is a challenge for current research. Starting from the characteristics of driving environment and driver’s visual cognitive law, this paper extracts low-level visual features, high-level visual features and dynamic visual features of road scenes, and combines two influencing factors of speed and road curvature to build a visual saliency calculation model of driving scenes based on logistic regression model (LR). In this paper, the AUC value is used to evaluate the model, and the results showed an accuracy of 90.43%, which is significant advantage over traditional algorithms.

Key words: visual saliency, driving scene, driving environment, dynamics

中图分类号: