测绘学报 ›› 2022, Vol. 51 ›› Issue (2): 201-211.doi: 10.11947/j.AGCS.2022.20200367

• 大地测量学与导航 • 上一篇    下一篇

组合GNSS观测值反演海面高度

王洁1,2, 王娜子1,3, 徐天河1, 高凡1, 贺匀峤1   

  1. 1. 山东大学空间科学研究院, 山东 威海 264209;
    2. 长安大学地质工程与测绘学院, 陕西 西安 710000;
    3. 中国科学院精密测量科学与技术创新研究院大地测量与地球动力学国家重点试验室, 湖北 武汉 430077
  • 收稿日期:2020-07-31 修回日期:2021-11-08 发布日期:2022-02-28
  • 通讯作者: 王娜子 E-mail:wnz@sdu.edu.cn
  • 作者简介:王洁(1995-),女,硕士生,研究方向为GNSS-R技术及其应用。E-mail:aibuwj112@163.com
  • 基金资助:
    山东省重点研发计划(重大科技创新工程)(2021ZDSYS01);国家重点研发计划(2020YFB0505800);国家自然科学基金(41704017);大地测量与地球动力学重点实验室基金(SKLGED2020-3-6-E)

Sea level estimation using the combination of GNSS observations

WANG Jie1,2, WANG Nazi1,3, XU Tianhe1, GAO Fan1, HE Yunqiao1   

  1. 1. Institute of Space Sciences, Shandong University, Weihai 264209, China;
    2. School of Geological Engineering and Geomatics, Chang'an University, Xi'an 710000, China;
    3. State Key Laboratory of Geodesy and Earth's Dynamics, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430077, China
  • Received:2020-07-31 Revised:2021-11-08 Published:2022-02-28
  • Supported by:
    The Key Research and Development Program of Shandong Province (Major Technological Innovation Project) (No. 2021ZDSYS01); The National Key Research and Development Program of China (No. 2020YFB0505800); The National Natural Science Foundation of China (No. 41704017); The State Key Laboratory of Geodesy and Earth's Dynamics (No. SKLGED2020-3-6-E)

摘要: 与验潮站技术相比,岸基全球导航卫星定位系统干涉反射技术(GNSS-IR)海面测高成本较低,且其观测量不受地壳沉降的影响,并可利用目前已有的沿海岸GNSS固定站提供的数据反演海面高度。目前常用观测量为大地测量型GNSS接收机给出的信噪比(SNR)值,然而,早期很多GNSS设备的输出文件中都不包含该值,导致无法利用它们研究海面高度长期变化趋势。但经典的码伪距和载波相位观测值中,同样包含着GNSS-IR测高信息。本文分别引入单频码伪距和单频载波相位的组合,以及单频码伪距和双频载波相位的组合GNSS两种观测值的组合实现了岸基海面测高。本文采用模拟数据证明了基于前一组合的GNSS-IR测高精度受到电离层延迟残差的影响,而后一种组合可避免该误差项的影响。为验证两种组合方法的有效性,在山东威海一海上栈桥上开展了试验,采集了全球定位系统(GPS)和北斗卫星导航系统(BDS)的观测数据,并处理得到了海面测高信息。最后,将反演结果与26 GHz雷达高度计的观测值进行了比较分析,发现二者具有较好的一致性,相关系数均优于85%。试验结果表明:两种码伪距和载波相位组合法均可用于GNSS-IR测高。另外,由于当前GNSS-IR测高受多种误差项影响,导致反演精度较低,使得后一种组合在避免电离层延迟残差方面的优越性并没有明显体现。本文组合方法的引入,增加了海面高度反演方法的多样性,提升了GNSS-IR测高技术的应用空间。

关键词: GNSS-IR, 海面测高, 信噪比, 码伪距, 载波相位

Abstract: Comparing with tide gauge, GNSS-IR is used to monitor the sea level at low-cost, and the measurements are not susceptible to crustal subsidence. Moreover, sea level can be retrieved using the data provided by the existing coastal continuously operating reference stations (CORS).Signal-to-noise ratio (SNR) values provided by high-precision geodetic GNSS equipment, are the usual observations for GNSS-IR sea level estimation, however, this observations are not always exist, especially in early GNSS files. Fortunately, the classical observations-carrier phase and the code phase-also contains the information of sea surface height. Therefore, this paper aims to realize GNSS-IR sea level estimation based on two combinations of code pseudorange and carrier phase. In this paper, simulation data is used to prove that the accuracy of the GNSS-IR sea level measurements based on the former combination is affected by the residual of ionospheric delay, while the latter combination can avoid the influence of this error term. In order to verify the effectiveness of the used methods, different observations of the Global Positioning System (GPS) and BeiDou Satellite navigation system (BDS), which are obtained from the station installed at Weihai coastal trestle were processed and analyzed. The results show that there exists good agreement between the sea level results of proposed method and that recorded by an in-situ radar altimeter, and correlation coefficient is better than 85%. The experimental results show that the two combination methods of code pseudorange and carrier phase both can be used for GNSS-IR sea level estimation. In addition, because GNSS-IR sea level measurements are affected by various error terms, the inversion accuracy is low, so that the superiority of the latter combination in avoiding ionospheric delay residuals is not clearly shown. The proposed methods increases the diversity of sea level estimation methods, and provides more feasibility for sea level estimation using GNSS reflectometry technology.

Key words: GNSS-IR, sea level, SNR, code pseudorange, carrier phase

中图分类号: