[1] BAO Yan, GUO Wen, WANG Guoquan, et al. Millimeter-accuracy structural deformation monitoring using stand-alone GPS: case study in Beijing, China[J]. Journal of Surveying Engineering, 2018,144(1): 05017007. [2] WANG Guoquan, LIU Hailin, MATTIOLI G S, et al. A stable geodetic reference frame for geological hazard monitoring in the Caribbean region[J]. Remote Senseing, 2019,11(6): 680. [3] WANG G, WELCH J, KEARNS T J, et al. Introduction to GPS geodetic infrastructure for land subsidence monitoring in Houston, Texas, USA[C]//Proceedings of the 9th International Symposium on Land Subsidence. Nagoya, Japan: [s.n.], 2015:297-303. [4] HASTAOGLU K O, SANLI D U. Accuracy of GPS rapid static positioning: application to Koyulhisar landslide, central Turkey[J]. Survey Review, 2011, 43(321): 226-240. [5] PAZIEWSKI J, SIERADZKI R, BARYLA R. Multi-GNSS high-rate RTK,PPP and novel direct phase observation processing method: application to precise dynamic displacement detection[J]. Measurement Science and Technology,2018,29(3): 035002-1-035002-15. [6] 张勤,黄观文,杨成生.地质灾害监测预警中的精密空间对地观测技术[J].测绘学报,2017, 46(10):1300-1307. DOI: 10.11947/j.AGCS.2017.20170453. ZHANG Qin, HUANG Guanwen, YANG Chengsheng. Precision space observation technique for geological hazard monitoring and early warning[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1300-1307. DOI: 10.11947/j.AGCS.2017.20170453. [7] BOEHM J, WERL B, SCHUH H. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data[J]. Journal of Geophysical Research Solid Earth, 2006, 111(B2):B02406. [8] DODO J D, KAMARUDIN M N, YAHYA M H. The effect of tropospheric delay on GPS height differences along the equator[J]. Surveying and Land Information Science, 2008, 68(3):145-154. [9] SATOMURA M, SHIMADA S, GOTO Y, et al. GPS measurements to investigate the reason why GPS is less accurate in mountain areas[C]//Proceedings of 2005 International Association of Geodesy Symposia. Berlin, Germany: Springer-Verlag, 2005:44-47. [10] SCHÖN S, WIESER A, MACHEINER K. Accurate tropospheric correction for local GPS monitoring networks with large height differences[C]//Proceedings of the 18th ION GNSS International Technical Meeting of the Satellite Division. California, USA:[s.n.], 2005:250-260. [11] 安向东, 杨登科. 测站间高差对短时段GPS基线解算的影响[J]. 大地测量与地球动力学, 2016, 36(6): 534-538. AN Xiangdong, YANG Dengke. The impact of the height difference between stations on the baselines solution of short period GPS observations[J]. Journal of Geodesy and Geodynamics, 2016, 36(6): 534-538. [12] AUH S C, LEE S B. Analysis of the effect of tropospheric delay on orthometric height determination at high mountain[J]. KSCE Journal of Civil Engineering,2018,22:4573-4579. [13] 姚宜斌, 徐星宇, 胡羽丰. GGOS对流层延迟产品精度分析及在PPP中的应用[J]. 测绘学报, 2017, 46(3): 278-287. DOI: 10.11947/j.AGCS.2017.20160383. YAO Yibin, XU Xingyu, HU Yufeng. Precision analysis of GGOS tropospheric delay product and its application in PPP[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3): 278-287. DOI: 10.11947/j.AGCS.2017.20160383. [14] BEUTLER G, BAUERSIMA I, GURTNER W, et al. Atmospheric refraction and other important biases in GPS carrier phase observations[M]. New South Wales:Australia Press,1988. [15] DOERFLINGER E, BAYER R, CHÉRY J, et al. Le système de positionnement GPS en zone de montagne: effet de la troposphère sur la précision GPS verticale[J]. Comptes Rendus de l’Académie des Sciences, 1998, 326(5): 319-325. [16] 赵静旸,时爽爽.对流层天顶延迟模型研究进展及其在中国区域的精度分析[J].地球物理学进展,2018,33(1):148-155. ZHAO Jingyang,SHI Shuangshuang. Research progress of zenith tropospheric delay model and its accuracy analysis over China[J]. Progress in Geophysics (in Chinese), 2018,33(1):148-155. [17] LIU Jiye, CHEN Xihong, SUN Jize, et al. An analysis of GPT2/GPT2w+Saastamoinen models for estimating zenith tropospheric delay over Asian area[J]. Advances in Space Research, 2017, 59(3):824-832. [18] 姚翔,陈明剑,王建光,等.高纬度地区GPT2w模型的适应性分析[J].空间科学学报,2020,40(2):242-249. YAO Xiang, CHEN Mingjian, WANG Jianguang,et al. Adaptability analysis of GPT2w model in high latitudes [J]. Chinese Journal of Space Science (in Chinese),2020,40(2):242-249. [19] ZHANG Di, GUO Jiming, CHEN Ming, et al. Quantitative assessment of meteorological and tropospheric zenith hydrostatic delay models[J]. Advances in Space Research, 2016, 58(6):1033-1043. [20] 王君刚,陈俊平,王解先,等.对流层经验改正模型在中国区域的精度评估[J].武汉大学学报(信息科学版),2016,41(12):1656-1663. WANG Jungang, CHEN Junping, WANG Jiexian,et al. Assesment of tropospheric delay correction models over China[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12): 1656-1663. [21] 蒋俊儒, 陶庭叶, 高飞. 一种提高大高差短基线精度的方法[J]. 大地测量与地球动力学, 2016, 36(4): 319-322. JIANG Junru, TAO Tingye, GAO Fei. A method for increasing precision of short baseline with large height difference by using semi-parametric model[J]. Journal of Geodesy and Geodynamics, 2016, 36(4): 319-322. [22] YOUNES S A M, AFIFY H A. Accuracy improvement of tropospheric delay correction models in space geodetic data. case study: Egypt[J]. Geodesy and Cartography, 2014, 40(4): 148-155. [23] 王巍. 对流层延迟对高差较大GPS测站短基线时间序列的影响分析[J]. 大地测量与地球动力学, 2018, 38(5): 504-509. WANG Wei. Analysis on influence of tropospheric delay on short baseline time series from GPS stations with the large height difference[J]. Journal of Geodesy and Geodynamics, 2018, 38(5): 504-509. [24] DU Sanli. Impact of large height difference on GPS vertical positioning solutions[C]//Proceedings of 2006 AGU Fall Meeting Abstracts. San Francisco, California, USA: [s.n.], 2006. [25] 刘宁, 张永志, 熊永良. GPS参考站对流层湿延迟近实时估计的三步滤波算法[J]. 武汉大学学报(信息科学版), 2015, 40(7): 918-923. LIU Ning, ZHANG Yongzhi, XIONG Yongliang. A three-step Kalman filter algorithm for near real-time estimating tropospheric wet delay on GPS reference stations[J]. Geomatics and Information Science of Wuhan University, 2015, 40(7): 918-923. [26] 徐彦田, 程鹏飞, 蔡艳辉. 中长基线单基准站动态定位卡尔曼滤波算法[J]. 西南交通大学学报, 2013, 48(2): 317-322, 356. XU Yantian, CHENG Pengfei, CAI Yanhui. Kalman filter algorithm for medium-range real-time kinematic positioning with one reference station[J]. Journal of Southwest Jiaotong University, 2013, 48(2): 317-322, 356. [27] 张国利, 杨开伟, 时小飞, 等. 对流层改正模型在双差RTK解算中的精度影响分析[J]. 测绘通报, 2016(9): 149-150. ZHANG Guoli, YANG Kaiwei, SHI Xiaofei, et al. Analysis of the influence of troposphere correction model on the accuracy of double difference RTK solution[J]. Bulletin of Surveying and Mapping, 2016(9): 149-150. [28] QIU Lei, LI Lei, LIU Zhixiang, et al. The correction model of tropospheric delay of GPS network RTK considering altitude factors[C]//Proceedings of 2009 International Conference on Information Engineering and Computer Science. Wuhan, China: IEEE, 2009: 1-4. [29] LI Wei, YUAN Yunbin, OU Jikun, et al. A new global zenith tropospheric delay model IGGtrop for GNSS applications[J]. Chinese Science Bulletin, 2012, 57(17): 2132-2139. [30] FAN Haopeng, SUN Zhongmiao, ZHANG Liping, et al. A two-step estimation method of troposphere delay with consideration of mapping function errors[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1): 76-84. [31] 李凯锋, 欧阳永忠, 陆秀平, 等. 海道测量定位中对流层延迟差分估计技术研究[J]. 武汉大学学报(信息科学版), 2013, 38(8): 930-934. LI Kaifeng, OUYANG Yongzhong, LU Xiuping, et al. A differential estimation technique of troposphere delay for precise positioning in hydrographic surveying[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 930-934. |