测绘学报 ›› 2022, Vol. 51 ›› Issue (7): 1544-1560.doi: 10.11947/j.AGCS.2022.20220068
刘耀林1, 刘启亮2, 邓敏2, 石岩2
收稿日期:
2022-02-28
修回日期:
2022-06-17
发布日期:
2022-08-13
作者简介:
刘耀林(1960-),男,博士,教授,国际欧亚科学院院士,主要从事地理数据挖掘、空间分析等研究工作。E-mail:yaolin610@163.com
基金资助:
LIU Yaolin1, LIU Qiliang2, DENG Min2, SHI Yan2
Received:
2022-02-28
Revised:
2022-06-17
Published:
2022-08-13
Supported by:
摘要: 大数据时代,全面涵盖人类活动与地理环境信息的地理大数据为更全面认识“人-地”关系提供了新的机遇。数据挖掘是地理大数据产生“大价值”的关键。与传统目的性采样数据(或“小数据”)相比,地理大数据具有更细的时空粒度、更广的时空范围、更丰富的人地关系信息、更高的时空有偏性及更低的时空精度。地理大数据的独特性使得地理大数据挖掘面临新的挑战。本文首先对地理大数据挖掘与空间数据挖掘的区别与联系进行分析;然后,对当前地理大数据挖掘方法、应用及软件的研究进展进行回顾和总结;最后,对地理大数据挖掘面临的挑战和发展趋势进行了展望。通过对地理大数据挖掘研究进展进行系统的分析,有望为地理大数据挖掘理论与方法的完善提供一定的参考和借鉴。
中图分类号:
刘耀林, 刘启亮, 邓敏, 石岩. 地理大数据挖掘研究进展与挑战[J]. 测绘学报, 2022, 51(7): 1544-1560.
LIU Yaolin, LIU Qiliang, DENG Min, SHI Yan. Recent advance and challenge in geospatial big data mining[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1544-1560.
[1] 吴志峰,柴彦威,党安荣,等.地理学碰上"大数据":热反应与冷思考[J].地理研究, 2015, 34(12):2207-2221. WU Zhifeng, CHAI Yanwei, DANG Anrong, et al. Geography interact with big data:dialogue and reflection[J]. Geographical Research, 2015, 34(12):2207-2221. [2] LI Songnian, DRAGICEVIC S, CASTRO F A, et al. Geospatial big data handling theory and methods:a review and research challenges[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115:119-133. [3] 裴韬,刘亚溪,郭思慧,等.地理大数据挖掘的本质[J].地理学报, 2019, 74(3):586-598. PEI Tao, LIU Yaxi, GUO Sihui, et al. Principle of big geodata mining[J]. Acta Geographica Sinica, 2019, 74(3):586-598. [4] 李德仁,张良培,夏桂松.遥感大数据自动分析与数据挖掘[J].测绘学报, 2014, 43(12):1211-1216. DOI:10.13485/jc.nki1.1-20892.0140.187. LI Deren, ZHANG Liangpei, XIA Guisong. Automatic analysis and mining of remote sensing big data[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(12):1211-1216. DOI:10.13485/jc.nki1.1-20892.0140.187. [5] 余柏蒗,王丛笑,宫文康,等.夜间灯光遥感与城市问题研究:数据、方法、应用和展望[J].遥感学报, 2021, 25(1):342-364. YU Bailang, WANG Congxiao, GONG Wenkang, et al. Nighttime light remote sensing and urban studies:data, methods, applications, and prospects[J]. National Remote Sensing Bulletin, 2021, 25(1):342-364. [6] 陆锋,刘康,陈洁.大数据时代的人类移动性研究[J].地球信息科学学报, 2014, 16(5):665-672. LU Feng, LIU Kang, CHEN Jie. Research on human mobility in big data era[J]. Journal of Geo-Information Science, 2014, 16(5):665-672. [7] 刘瑜,姚欣,龚咏喜,等.大数据时代的空间交互分析方法和应用再论[J].地理学报, 2020, 75(7):1523-1538. LIU Yu, YAO Xin, GONG Yongxi, et al. Analytical methods and applications of spatial interactions in the era of big data[J]. Acta Geographica Sinica, 2020, 75(7):1523-1538. [8] 傅伯杰.地理学:从知识、科学到决策[J].地理学报, 2017, 72(11):1923-1932. FU Bojie. Geography:from knowledge, science to decision making support[J]. Acta Geographica Sinica, 2017, 72(11):1923-1932. [9] 宋长青.地理学研究范式的思考[J].地理科学进展, 2016, 35(1):1-3. SONG Changqing. On paradigms of geographical research[J]. Progress in Geography, 2016, 35(1):1-3. [10] 李德仁.论时空大数据的智能处理与服务[J].地球信息科学学报, 2019, 21(12):1825-1831. LI Deren. The intelligent processing and service of spatiotemporal big data[J]. Journal of Geo-Information Science, 2019, 21(12):1825-1831. [11] GOLDSTON D. Big data:data wrangling[J]. Nature, 2008, 455(7209):15. [12] STEVEN J B. Dealing with data[J]. Science, 2011, 331(6018):639-806. [13] YANG Chaowei, CLARKE K, SHEKHAR S, et al. Big spatiotemporal data analytics:a research and innovation frontier[J]. International Journal of Geographical Information Science, 2020, 34(6):1075-1088. [14] GINSBERG J, MOHEBBI M H, PATEL R S, et al. Detecting influenza epidemics using search engine query data[J]. Nature, 2009, 457(7232):1012-1014. [15] SONG Chaoming, QU Zehui, BLUMMM N, et al. Limits of predictability in human mobility[J]. Science, 2010, 327(5968):1018-1021. [16] HUANG Bo, WANG Jionghua, CAI Jixuan, et al. Integrated vaccination and physical distancing interventions to prevent future COVID-19 waves in Chinese cities[J]. Nature Human Behaviour, 2021, 5(6):695-705. [17] 於志文,於志勇,周兴社.社会感知计算:概念、问题及其研究进展[J].计算机学报, 2012, 35(1):16-26. YU Zhiwen, YU Zhiyong, ZHOU Xingshe. Socially aware computing[J]. Chinese Journal of Computers, 2012, 35(1):16-26. [18] 郑宇.城市计算概述[J].武汉大学学报(信息科学版), 2015, 40(1):1-13. ZHENG Yu. Introduction to urban computing[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1):1-13. [19] LIU Yu, LIU Xi, GAO Song, et al. Social sensing:a new approach to understanding our socioeconomic environments[J]. Annals of the Association of American Geographers, 2015, 105(3):512-530. [20] 姚晓婧,王喆,王大成,等.智慧城市空间信息公共平台:城市数据价值之源[J].中国科学院院刊, 2019, 34(10):1165-1175. YAO Xiaojing, WANG Zhe, WANG Dacheng, et al. Spatial information common platform of smart cites:root of urban data value blooming[J]. Bulletin of the Chinese Academy of Sciences, 2019, 34(10):1165-1175. [21] CHENG Shifen, LU Feng, PENG Peng, et al. Multi-task and multi-view learning based on particle swarm optimization for short-term traffic forecasting[J]. Knowledge-Based Systems, 2019, 180:116-132. [22] LIU Lin, FENG Jiaxin, REN Fang, et al. Examining the relationship between neighborhood environment and residential locations of juvenile and adult migrant burglars in China[J]. Cities, 2018, 82:10-18. [23] SHAN Jingbo, ZHENG Yu, TONG Wenzhu, et al. Inferring gas consumption and pollution emission of vehicles throughout a city[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY:Association for Computing Machinery, 2014:1027-1036. [24] LIESS S, AGRAWAL S, CHATTERJEE S, et al. A teleconnection between the west siberian plain and the ENSO region[J]. Journal of Climate, 2017, 30(1):301-315. [25] GUAN Qingfeng, REN Shuliang, CHEN Lirong, et al. A spatial-compositional feature fusion convolutional autoencoder for multivariate geochemical anomaly recognition[J]. Computers&Geosciences, 2021, 156:104890. [26] MARR B. Big data:using smart big data, analytics and metrics to make better decisions and improve performance[M]. Chichester:John Wiley&Sons, 2015. [27] 李德仁,王树良,李德毅.空间数据挖掘理论与应用[M]. 3版.北京:科学出版社, 2019. LI Deren, WANG Shuliang, LI Deyi. Theory and method research on spatial data mining[M]. 3rd ed. Beijing:Science Press, 2019. [28] 王劲峰,姜成晟,李连发,等.空间抽样与统计推断[M].北京:科学出版社, 2009. WANG Jinfeng, JIANG Chengsheng, LI Lianfa, et al. Spatial sampling and statistical inference[M]. Beijing:Science Press, 2009. [29] LIU Jianzheng, LI Jie, LI Weifeng, et al. Rethinking big data:a review on the data quality and usage issues[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115:134-142. [30] TANG Luliang, YANG Xue, KAN Zihan, et al. Lane-level road information mining from vehicle GPS trajectories based on naïve bayesian classification[J]. ISPRS International Journal of Geo-Information, 2015, 4(4):2660-2680. [31] YUAN Yihong, WEI Guixing, LU Yongmei. Evaluating gender representativeness of location-based social media:a case study of Weibo[J]. Annals of GIS, 2018, 24(3):163-176. [32] LAZER D, KENNEDY R, KING G, et al. The parable of Google flu:traps in big data analysis[J]. Science, 2014, 343(6176):1203-1205. [33] 王劲峰,葛咏,李连发,等.地理学时空数据分析方法[J].地理学报, 2014, 69(9):1326-1345. WANG Jinfeng, GE Yong, LI Lianfa, et al. Spatiotemporal data analysis in geography[J]. Acta Geographica Sinica, 2014, 69(9):1326-1345. [34] CHI Guanghua, LIU Yu, WU Zhengwei, et al. Ghost cities analysis based on positioning data in China[EB/OL].[2015-11-12]. https://arxiv.org/abs/1510.08505v2. [35] 周成虎,裴韬,杜云艳,等.新冠肺炎疫情大数据分析与区域防控政策建议[J].中国科学院院刊, 2020, 35(2):200-203. ZHOU Chenghu, PEI Tao, DU Yunyan, et al. Big data analysis on COVID-19 epidemic and suggestions on regional prevention and control policy[J]. Bulletin of the Chinese Academy of Sciences, 2020, 35(2):200-203. [36] 李志林,王继成,谭诗腾,等.地理信息科学中尺度问题的30年研究现状[J].武汉大学学报(信息科学版), 2018, 43(12):2233-2242. LI Zhilin, WANG Jicheng, TAN Shiteng, et al. Scale in geo-information science:an overview of thirty-year development[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):2233-2242. [37] CHEN Jie, PEI Tao, SHAW S L, et al. Fine-grained prediction of urban population using mobile phone location data[J]. International Journal of Geographical Information Science, 2018, 32(9):1770-1786. [38] 邓敏,蔡建南,杨文涛,等.多模态地理大数据时空分析方法[J].地球信息科学学报, 2020, 22(1):41-56. DENG Min, CAI Jiannan, YANG Wentao, et al. Spatio-temporal analysis methods for multi-modal geographic big data[J]. Journal of Geo-Information Science, 2020, 22(1):41-56. [39] TAN Pangning, STEINBACH M, KUMAR V. Introduction to data mining[M]. Boston:Addison Wesley Press, 2005. [40] HAN Jiawei, KAMBER M, PEI Jian. Data mining:concepts and techniques[M]. 3rd ed. Amsterdam:Elsevier Press, 2012. [41] SHEKHAR S, HUANG Yan. Discovering spatial co-location patterns:a summary of results[C]//Proceedings of the 7th International Symposium on Spatial and Temporal Databases. Redondo Beach, CA:Springer, 2001:236-256. [42] YUE Yang, YEH A G O. Spatiotemporal traffic-flow dependency and short-term traffic forecasting[J]. Environment and Planning B:Urban Analytics and City Science, 2008, 35(5):762-771. [43] CHENG Shifen, LU Feng, PENG Peng, et al. Short-term traffic forecasting:an adaptive ST-KNN model that considers spatial heterogeneity[J]. Computers, Environment and Urban Systems, 2018, 71:186-198. [44] CHENG Ximeng, WANG Zhiqian, YANG Xuexi, et al. Multi-scale detection and interpretation of spatio-temporal anomalies of human activities represented by time-series[J]. Computers, Environment and Urban Systems, 2021, 88:101627. [45] 李志林,刘启亮,唐建波.尺度驱动的空间聚类理论[J].测绘学报, 2017, 46(10):1534-1548. DOI:10.11947/j.AGCS.2017.20170275. LI Zhilin, LIU Qiliang, TANG Jianbo. Towards a scale-driven theory for spatial clustering[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1534-1548. DOI:10.11947/j.AGCS.2017.20170275. [46] PAN Gang, QI Guande, WU Zhaohui, et al. Land-use classification using taxi GPS traces[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(1):113-123. [47] PEI Tao, SOBOLEVSKY S, RATTI C, et al. A new insight into land use classification based on aggregated mobile phone data[J]. International Journal of Geographical Information Science, 2014, 28(9):1988-2007. [48] YAO Yao, LI Xia, LIU Xiaoping, et al. Sensing spatial distribution of urban land use by integrating points-of-interest and Google Word2Vec model[J]. International Journal of Geographical Information Science, 2017, 31(4):825-848. [49] KANG Chaogui, SHI Li, WANG Fahui, et al. How urban places are visited by social groups?Evidence from matrix factorization on mobile phone data[J]. Transactions in GIS, 2020, 24(6):1504-1525. [50] 李小文,曹春香,常超一.地理学第一定律与时空邻近度的提出[J].自然杂志, 2007, 29(2):69-71. LI Xiaowen, CAO Chunxiang, CHANG Chaoyi. The first law of geography and spatial-temporal proximity[J]. Chinese Journal of Nature, 2007, 29(2):69-71. [51] 裴韬,舒华,郭思慧,等.地理流的空间模式:概念与分类[J].地球信息科学学报, 2020, 22(1):30-40. PEI Tao, SHU Hua, GUO Sihui, et al. The concept and classification of spatial patterns of geographical flow[J]. Journal of Geo-Information Science, 2020, 22(1):30-40. [52] LIU Yu, TONG Daoqin, LIU Xi. Measuring spatial autocorrelation of vectors[J]. Geographical Analysis, 2015, 47(3):300-319. [53] SHU Hua, PET Tao, SONG Ci, et al. L-function of geographical flows[J]. International Journal of Geographical Information Science, 2021, 35(4):689-716. [54] ADRIENKO N, ADRIENKO G. Spatial generalization and aggregation of massive movement data[J]. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(2):205-219. [55] TAO Ran, THILL J C. FlowAMOEBA:identifying regions of anomalous spatial interactions[J]. Geographical Analysis, 2019, 51(1):111-130. [56] GUO Diansheng, ZHU Xi. Origin-destination flow data smoothing and mapping[J]. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12):2043-2052. [57] SONG Ci, PEI Tao, MA Ting, et al. Detecting arbitrarily shaped clusters in origin-destination flows using ant colony optimization[J]. International Journal of Geographical Information Science, 2019, 33(1):134-154. [58] LIU Qiliang, YANG Jie, DENG Min, et al. SNN_flow:a shared nearest-neighbor-based clustering method for inhomogeneous origin-destination flows[J]. International Journal of Geographical Information Science, 2022, 36(2):253-279. DOI:10.1080/13658816.2021.1899184. [59] 杨喜平,方志祥.移动定位大数据视角下的人群移动模式及城市空间结构研究进展[J].地理科学进展, 2018, 37(7):880-889. YANG Xiping, FANG Zhixiang. Recent progress in studying human mobility and urban spatial structure based on mobile location big data[J]. Progress in Geography, 2018, 37(7):880-889. [60] FANG Zhixiang, YANG Xiping, XU Yang, et al. Spatiotemporal model for assessing the stability of urban human convergence and divergence patterns[J]. International Journal of Geographical Information Science, 2017, 31(11):2119-2141. [61] LIU Xi, GONG Li, GONG Yongxi, et al. Revealing travel patterns and city structure with taxi trip data[J]. Journal of Transport Geography, 2015, 43:78-90. [62] NEWMAN M E J. Modularity and community structure in networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(23):8577-8582. [63] CHAKRABORTY T, DALMIA A, MUKHERJEE A, et al. Metrics for community analysis:a survey[J]. ACM Computing Surveys, 2018, 50(4):54. [64] GUO Diansheng, JIN Hai, GAO Peng, et al. Detecting spatial community structure in movements[J]. International Journal of Geographical Information Science, 2018, 32(7):1326-1347. [65] WAN You, LIU Yaolin. DASSCAN:a density and adjacency expansion-based spatial structural community detection algorithm for networks[J]. ISPRS International Journal of Geo-Information, 2018, 7(4):159. [66] LIU Qiliang, ZHU Sancheng, DENG Ming, et al. A spatial scan statistic to detect spatial communities of vehicle movements on urban road networks[J]. Geographical Analysis, 2022, 54(1):124-148. DOI:10.1111/gean.12278. [67] EXPERT P, EVANS T S, BLONDEL V V, et al. Uncovering space-independent communities in spatial networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(19):7663-7668. [68] GAO Song, LIU Yu, WANG Yaoli, et al. Discovering spatial interaction communities from mobile phone data[J]. Transactions in GIS, 2013, 17(3):463-481. [69] BLATTI III C, EMAD A, BERRY M J, et al. Knowledge-guided analysis of "omics" data using the KnowEnG cloud platform[J]. PLoS Biology, 2020, 18(1):e3000583. [70] SINHA S, SONG J, WEINSHILBOUM R, et al. KnowEnG:a knowledge engine for genomics[J]. Journal of the American Medical Informatics Association, 2015, 22(6):1115-1119. [71] 邓敏,石岩,杨学习,等.地理空间异常探测理论与方法[M].北京:科学出版社, 2021. DENG Min, SHI Yan, YANG Xuexi, et al. Theory and method of geo-spatial anomaly detection[J]. Beijing:Science Press, 2021. [72] HODGE V, AUSTIN J. A survey of outlier detection methodologies[J]. Artificial Intelligence Review, 2004, 22(2):85-126. [73] 朱阿兴,闾国年,周成虎,等.地理相似性:地理学的第三定律?[J].地球信息科学学报, 2020, 22(4):673-679. ZHU Axing, LV Guonian, ZHOU Chenghu, et al. Geographic similarity:third law of geography?[J]. Journal of Geo-Information Science, 2020, 22(4):673-679. [74] HUANG Hai. Anomalous behavior detection in single-trajectory data[J]. International Journal of Geographical Information Science, 2015, 29(12):2075-2094. [75] XIAO Ding, SONG Li, WANG Ruijia, et al. Embedding geographic information for anomalous trajectory detection[J]. World Wide Web, 2020, 23(5):2789-2809. [76] LIU Baoju, DENG Min, YANG Jingyi, et al. Detecting anomalous spatial interaction patterns by maximizing urban population carrying capacity[J]. Computers, Environment and Urban Systems, 2021, 87:101616. [77] GAO Yizhao, LI Ting, WANG Shaowen, et al. A multidimensional spatial scan statistics approach to movement pattern comparison[J]. International Journal of Geographical Information Science, 2018, 32(7):1304-1325. [78] SHI Yan, DENG Min, YANG Xuexi, et al. Detecting anomalies in spatio-temporal flow data by constructing dynamic neighbourhoods[J]. Computers, Environment and Urban Systems, 2018, 67:80-96. [79] JEONG M H, YIN Junjun, WANG Shaowen. Outlier detection and comparison of origin-destination flows using data depth[C]//Proceedings of the 10th International Conference on Geographic Information Science. Melbourne, Australia:[s.n.], 2018:6. [80] CHAWLA A, ZHENG Yu, HU Jiafeng. Inferring the root cause in road traffic anomalies[C]//Proceedings of the 12th IEEE International Conference on Data Mining. Brussels, Belgium:IEEE, 2012:141-150. [81] 石岩,王达,陈袁芳,等.流空间邻近关系约束下的流行病分布空间异常探测方法[J].测绘学报, 2021, 50(6):777-788. DOI:10.11947/j.AGCS.2021.20200350. SHI Yan, WANG Da, CHEN Yuanfang, et al. An anomaly detection approach from spatio distributions of epidemic based on adjacency constraints in flow space[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(6):777-788. DOI:10.11947/j.AGCS.2021.20200350. [82] 宋宏权,王丰,刘学军,等.地理环境下的群体运动分析与异常行为检测[J].地理与地理信息科学, 2015, 31(4):1-5, 11. SONG Hongquan, WANG Feng, LIU Xuejun, et al. Crowd movement analysis and abnormal behavior detection under geographical environment[J]. Geography and Geo-Information Science, 2015, 31(4):1-5, 11. [83] LAM P, WANG Lili, NGAN H Y T, et al. Outlier detection in large-scale traffic data by naïve Bayes method and Gaussian mixture model method[J]. Electronic Imaging, 2017, 29:73-78. [84] ZHENG Yu, ZHANG Huichu, YU Yong. Detecting collective anomalies from multiple spatio-temporal datasets across different domains[C]//Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems. Seattle, WA:Association for Computing Machinery, 2015:2. [85] HUANG Bo, WU Bo, BARRY M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices[J]. International Journal of Geographical Information Science, 2010, 24(3):383-401. [86] DU Zhenhong, WU Sensen, KWAN M P, et al. A spatiotemporal regression-kriging model for space-time interpolation:a case study of chlorophyll-a prediction in the coastal areas of Zhejiang, China[J]. International Journal of Geographical Information Science, 2018, 32(10):1927-1947. [87] HUANG Yan, SHEKHAR S, XIONG Hui. Discovering colocation patterns from spatial data sets:a general approach[J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(12):1472-1485. [88] KOPERSKI K, HAN Jiawei. Discovery of spatial association rules in geographic information databases[C]//Proceedings of the 4th International Symposium on Spatial Databases. Portland, ME:Springer, 1995:47-66. [89] 李光强,邓敏,朱建军.基于Voronoi图的空间关联规则挖掘方法研究[J].武汉大学学报(信息科学版), 2008, 33(12):1242-1245. LI Guangqiang, DENG Min, ZHU Jianjun. Spatial association rules mining methods based on voronoi diagram[J]. Geomatics and Information Science of Wuhan University, 2008, 33(12):1242-1245. [90] DING Wei, EICK C F, YUAN Xiaojing, et al. A framework for regional association rule mining and scoping in spatial datasets[J]. GeoInformatica, 2011, 15(1):1-28. [91] MOHAN P, SHEKHAR S, SHINE J A, et al. A neighborhood graph based approach to regional co-location pattern discovery:a summary of results[C]//Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Chicago, IL:Association for Computing Machinery, 2011:122-132. [92] QIAN Feng, CHIEW K, HE Qinming, et al. Mining regional co-location patterns with kNNG[J]. Journal of Intelligent Information Systems, 2014, 42(3):485-505. [93] YU Wenhao. Regional co-location pattern scoping on a street network considering distance decay effects of spatial interaction[J]. PLoS One, 2017, 12(8):e0181959. [94] DENG Min, CAI Jiannan, LIU Qiliang, et al. Multi-level method for discovery of regional co-location patterns[J]. International Journal of Geographical Information Science, 2017, 31(9):1846-1870. [95] LI Yan, SHEKHAR S. Local co-location pattern detection:a summary of results[C]//Proceedings of the 10th International Conference on Geographic Information Science. Dagstuhl, Germany:Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018:10. [96] LIU Qiliang, LIU Wenkai, DENG Min, et al. An adaptive detection of multilevel co-location patterns based on natural neighborhoods[J]. International Journal of Geographical Information Science, 2021, 35(3):556-581. [97] CHEN Yimin, CHEN Xinyue, LIU Zihui, et al. Understanding the spatial organization of urban functions based on co-location patterns mining:a comparative analysis for 25 Chinese cities[J]. Cities, 2020, 97:102563. [98] BARUA S, SANDER J. Mining statistically significant co-location and segregation patterns[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(5):1185-1199. [99] WANG Fahui, HU Yujie, WANG Shuai, et al. Local indicator of colocation quotient with a statistical significance test:examining spatial association of crime and facilities[J]. The Professional Geographer, 2017, 69(1):22-31. [100] CAI Jiannan, DENG Min, LIU Qiliang, et al. Nonparametric significance test for discovery of network-constrained spatial co-location patterns[J]. Geographical Analysis, 2019, 51(1):3-22. [101] LIU Wenkai, LIU Qiliang, DENG Min, et al. Discovery of statistically significant regional co-location patterns on urban road networks[J]. International Journal of Geographical Information Science, 2022, 36(4):749-772. [102] HE Zhanjun, DENG Min, XIE Zhong, et al. Discovering the joint influence of urban facilities on crime occurrence using spatial co-location pattern mining[J]. Cities, 2020, 99:102612. [103] LIU Wei, ZHENG Yu, CHAWLA S, et al. Discovering spatio-temporal causal interactions in traffic data streams[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Diego, CA:Association for Computing Machinery, 2011:1010-1018. [104] MOHAN P, SHEKHAR S, SHINE J A, et al. Cascading spatio-temporal pattern discovery[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(11):1977-1992. [105] ZHANG Haiping, ZHOU Xingxing, TANG Guoan, et al. Detecting colocation flow patterns in the geographical interaction data[J]. Geographical Analysis, 2022, 54(1):84-103. DOI:10.1111/gean.12274. [106] HE Zhanjun, DENG Min, CAI Jiannan, et al. Mining spatiotemporal association patterns from complex geographic phenomena[J]. International Journal of Geographical Information Science, 2020, 34(6):1162-1187. [107] KAN Zihan, KWAN M P, TANG Luliang. Ripley's K-function for network-constrained flow data[J]. Geographical Analysis, 2021. DOI:10.1111/gean.12300. [108] CHENG Tao, HAWORTH J, ANBAROGLU B, et al. Spatiotemporal data mining[M]//FISCHER M M, NIJKAMP P. Handbook of Regional Science. Berlin, Heidelberg:Springer, 2014:1173-1193. [109] 王佳璆,邓敏,程涛,等.时空序列数据分析和建模[M].北京:科学出版社, 2012. WANG Jiaqiu, DENG Min, CHENG Tao, et al. Spatio-temporal series data analysis and modeling[M]. Beijing:Science Press, 2012. [110] ZHENG Yu, YU E, MATTHES F, et al. Urban computing[M]. London:MIT Press, 2019. [111] SHI Xingjian, CHEN Zhourong, WANG Hao, et al. Convolutional LSTM network:a machine learning approach for precipitation nowcasting[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Canada:MIT Press, 2015:802-810. [112] ZHENG Yu, YI Xiuwen, LI Ming, et al. Forecasting fine-grained air quality based on big data[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Sydney, NSW:Association for Computing Machinery, 2015:2267-2276. [113] CHENG Shifen, PENG Peng, LU Feng. A lightweight ensemble spatiotemporal interpolation model for geospatial data[J]. International Journal of Geographical Information Science, 2020, 34(9):1849-1872. [114] ZHANG Junbo, ZHENG Yu, QI Dekang, et al. Predicting citywide crowd flows using deep spatio-temporal residual networks[J]. Artificial Intelligence, 2018, 259:147-166. [115] REN Yibin, CHEN Huanfa, HAN Yong, et al. A hybrid integrated deep learning model for the prediction of citywide spatio-temporal flow volumes[J]. International Journal of Geographical Information Science, 2020, 34(4):802-823. [116] ZHAO Ling, SONG Yujiao, ZHANG Chao, et al. T-GCN:a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9):3848-3858. [117] YU Bing, YIN Haoteng, ZHU Zhanxing. Spatio-temporal graph convolutional networks:a deep learning framework for traffic forecasting[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm:IJCAI.org, 2018:3634-3640. [118] WU Zonghan, PAN Shirui, LONG Guodong, et al. Graph wavenet for deep spatial-temporal graph modeling[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao, China:AAAI Press, 2019:1907-1913. [119] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444. [120] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations. Toulon:OpenReview.net, 2017. [121] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. [122] WANG Jinfeng, ZHANG Tonglin, FU Bojie. A measure of spatial stratified heterogeneity[J]. Ecological Indicators, 2016, 67:250-256. [123] DENG Min, YANG Wentao, LIU Qiliang, et al. Heterogeneous space-time artificial neural networks for space-time series prediction[J]. Transactions in GIS, 2018, 22(1):183-201. [124] YANG Wentao, DENG Min, XU Feng, et al. Prediction of hourly PM2.5 using a space-time support vector regression model[J]. Atmospheric Environment, 2018, 181:12-19. [125] DU Zhenhong, WANG Zhongyi, WU Sensen, et al. Geographically neural network weighted regression for the accurate estimation of spatial non-stationarity[J]. International Journal of Geographical Information Science, 2020, 34(7):1353-1377. [126] DENG Min, YANG Wentao, LIU Qiliang. Geographically weighted extreme learning machine:a method for space-time prediction[J]. Geographical Analysis, 2017, 49(4):433-450. [127] KARPATNE A, ATLURI G, FAGHMOUS J H, et al. Theory-guided data science:a new paradigm for scientific discovery from data[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(10):2318-2331. [128] WILLARD J, JIA Xiaowei, XU Shaoming, et al. Integrating scientific knowledge with machine learning for engineering and environmental systems[J]. ACM Computing Surveys, 2022. [129] 龙瀛,毛其智.城市规划大数据理论与方法[M].北京:中国建筑工业出版社, 2019. LONG Ying, MAO Qizhi. Theory and method of big data in urban planning[M]. Beijing:China Architecture and Building Press, 2019. [130] 甄峰,王波,秦萧,等.基于大数据的城市研究与规划方法创新[M].北京:中国建筑工业出版社, 2015. ZHEN Feng, WANG Bo, QIN Xiao, et al. Urban studies and innovation in urban planning methods based on big data[M]. Beijing:China Architecture&Building Press, 2015. [131] 甄茂成,党安荣,许剑.大数据在城市规划中的应用研究综述[J].地理信息世界, 2019, 26(1):6-12, 24. ZHEN Maocheng, DANG Anrong, XU Jian. Research progress on the applications of big data to urban planning[J]. Geomatics World, 2019, 26(1):6-12, 24. [132] KRINGS G, CALABRESE F, RATTI C, et al. Urban gravity:a model for inter-city telecommunication flows[J]. Journal of Statistical Mechanics:Theory and Experiment, 2009, 2009:L07003. [133] 董超,修春亮,魏冶.基于通信流的吉林省流空间网络格局[J].地理学报, 2014, 69(4):510-519. DONG Chao, XIU Chunliang, WEI Ye. Network structure of'space of flows'in Jilin Province based on telecommunication flows[J]. Acta Geographica Sinica, 2014, 69(4):510-519. [134] TU Wei, ZHU Tingting, XIE Jizhe, et al. Portraying the spatial dynamics of urban vibrancy using multisource urban big data[J]. Computers, Environment and Urban Systems, 2020, 80:101428. [135] LIU Qiliang, WU Zhihui, DENG Min, et al. Network-constrained bivariate clustering method for detecting urban black holes and volcanoes[J]. International Journal of Geographical Information Science, 2020, 34(10):1903-1929. [136] GONG Li, LIU Xi, WU Lun, et al. Inferring trip purposes and uncovering travel patterns from taxi trajectory data[J]. Cartography and Geographic Information Science, 2016, 43(2):103-114. [137] 龙瀛,张宇,崔承印.利用公交刷卡数据分析北京职住关系和通勤出行[J].地理学报, 2012, 67(10):1339-1352. LONG Ying, ZHANG Yu, CUI Chengyin. Identifying commuting pattern of Beijing using bus smart card data[J]. Acta Geographica Sinica, 2012, 67(10):1339-1352. [138] ZHANG Junbo, ZHENG Yu, QI Dekang. Deep spatio-temporal residual networks for citywide crowd flows prediction[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco, CA:AAAI Press, 2017:1655-1661. [139] JIANG Bin, MA Ding, YIN Junjun, et al. Spatial distribution of city tweets and their densities[J]. Geographical Analysis, 2016, 48(3):337-351. [140] CAI Jixuan, HUANG Bo, SONG Yimeng. Using multi-source geospatial big data to identify the structure of polycentric cities[J]. Remote Sensing of Environment, 2017, 202:210-221. [141] YE Chao, ZHANG Fan, MU Lan, et al. Urban function recognition by integrating social media and street-level imagery[J]. Environment and Planning B:Urban Analytics and City Science, 2021, 48(6):1430-1444. [142] 张帆,刘瑜.街景影像-基于人工智能的方法与应用[J].遥感学报, 2021, 25(5):1043-1054. ZHANG Fan, LIU Yu. Street view imagery:methods and applications based on artificial intelligence[J]. Journal of Remote Sensing, 2021, 25(5):1043-1054. [143] ZHANG Fan, ZU Jinyan, HU Mingyuan, et al. Uncovering inconspicuous places using social media check-ins and street view images[J]. Computers, Environment and Urban Systems, 2020, 81:101478. [144] 杨东援,段征宇.大数据环境下城市交通分析技术[M].上海:同济大学出版社, 2015. YANG Dongyuan, DUAN Zhengyu. Urban traffic analysis technology in the big data environment[M]. Shanghai:Tongji University Press, 2015. [145] 唐炉亮,刘章,杨雪,等.符合认知规律的时空轨迹融合与路网生成方法[J].测绘学报, 2015, 44(11):1271-1276, 1284. DOI:10.11947/j.AGCS.2015.20140591. TANG Luliang, LIU Zhang, YANG Xue, et al. A method of spatio-temporal trajectory fusion and road network generation based on cognitive law[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(11):1271-1276, 1284. DOI:10.11947/j.AGCS.2015.20140591. [146] YANG Wei, AI Tinghua, LU Wei. A method for extracting road boundary information from crowdsourcing vehicle GPS trajectories[J]. Sensors, 2018, 18(4):1261. [147] DENG Min, HUANG Jincai, ZHANG Yunfei, et al. Generating urban road intersection models from low-frequency GPS trajectory data[J]. International Journal of Geographical Information Science, 2018, 32(12):2337-2361. [148] YANG Xue, HOU Liang, GUO Mingqiang, et al. Road intersection identification from crowdsourced big trace data using Mask-RCNN[J]. Transactions in GIS, 2022, 26(1):278-296. DOI:10.1111/tgis.12851. [149] WANG Zuchao, LU Min, YUAN Xiaoru, et al. Visual traffic jam analysis based on trajectory data[J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12):2159-2168. [150] PANG L X, CHAWLA S, LIU Wei, et al. On detection of emerging anomalous traffic patterns using GPS data[J]. Data&Knowledge Engineering, 2013, 87:357-373. [151] WANG Yilun, ZHENG Yu, XUE Yexiang. Travel time estimation of a path using sparse trajectories[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:Association for Computing Machinery, 2014:25-34. [152] KAN Zihan, TANG Luliang, KWAN M P, et al. Fine-grained analysis on fuel-consumption and emission from vehicles trace[J]. Journal of Cleaner Production, 2018, 203:340-352. [153] SANTI P, RESTA G, SZELL M, et al. Quantifying the benefits of vehicle pooling with shareability networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(37):13290-13294. [154] YUAN Jing, ZHENG Yu, XIE Xing, et al. Driving with knowledge from the physical world[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Diego, CA:Association for Computing Machinery, 2011:316-324. [155] REN Yibin, CHENG Tao, ZHANG Yang. Deep spatio-temporal residual neural networks for road-network-based data modeling[J]. International Journal of Geographical Information Science, 2019, 33(9):1894-1912. [156] 程昌秀,宋长青,吴晓静,等.地理时空三向聚类分析方法的构建与实践[J].地理学报, 2020, 75(5):904-916. CHENG Changxiu, SONG Changqing, WU Xiaojing, et al. Tri-clustering:construction and practice of space-time integrated analysis tool[J]. Acta Geographica Sinica, 2020, 75(5):904-916. [157] LIU Ye, ZHENG Yu, LIANG Yuxuan, et al. Urban water quality prediction based on multi-task multi-view learning[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence. New York:AAAI Press, 2016:2576-2582. [158] YAN Jianzhuo, LIU Jiaxue, YU Yongchuan, et al. Water quality prediction in the Luan river based on 1-DRCNN and BiGRU hybrid neural network model[J]. Water, 2021, 13(9):1273. |
[1] | 张新长, 何显锦, 孙颖, 黄健锋, 张志强. 多尺度空间数据联动更新技术研究现状及展望[J]. 测绘学报, 2022, 51(7): 1520-1535. |
[2] | 艾廷华, 张翔. 地理信息科学中尺度概念的诠释与表达[J]. 测绘学报, 2022, 51(7): 1640-1652. |
[3] | 梁哲恒, 黎宵, 邓鹏, 盛森, 姜福泉. 融合多尺度特征注意力的遥感影像变化检测方法[J]. 测绘学报, 2022, 51(5): 668-676. |
[4] | 孙伟伟, 常明会, 孟祥超, 杨刚, 任凯. 空谱协同多尺度顶点成分分析的高光谱影像端元提取[J]. 测绘学报, 2022, 51(4): 587-598. |
[5] | 洪亮, 冯亚飞, 彭双云, 楚森森. 面向对象的多尺度加权联合稀疏表示的高空间分辨率遥感影像分类[J]. 测绘学报, 2022, 51(2): 224-237. |
[6] | 邓敏, 谌恺祺, 石岩, 陈袁芳, 郭艺文. 多尺度空间同位模式挖掘的点过程分解方法[J]. 测绘学报, 2022, 51(2): 258-268. |
[7] | 高晓蓉, 闫浩文, 禄小敏. 多尺度地图空间居民地语义相似度计算方法[J]. 测绘学报, 2022, 51(1): 95-103. |
[8] | 张玉鑫, 颜青松, 邓非. 高分辨率遥感影像建筑物提取多路径RSU网络法[J]. 测绘学报, 2022, 51(1): 135-144. |
[9] | 叶健, 胡鑫, 徐鸿蒙, 陈曦, 吕琦. 多尺度GTWR城市住宅价格建模与分析[J]. 测绘学报, 2021, 50(9): 1266-1274. |
[10] | 李静, 刘海砚, 郭文月, 陈欣. 基于深度学习的人群活动流量时空预测模型[J]. 测绘学报, 2021, 50(4): 522-531. |
[11] | 方孟元, 唐炉亮, 杨雪, 胡淳. 基于低频GNSS轨迹的转向级城市交通信息精细预测[J]. 测绘学报, 2021, 50(11): 1469-1477. |
[12] | 续东, 柳景斌, 花向红, 陶武勇. 道路空间特征与测量距离相结合的LiDAR道路边界点提取算法[J]. 测绘学报, 2021, 50(11): 1534-1545. |
[13] | 刘鹏程, 肖天元, 肖佳, 艾廷华. 曲线多尺度表达的Head-Tail信息量分割法[J]. 测绘学报, 2020, 49(7): 921-933. |
[14] | 张志衡, 董箭, 彭认灿, 陆毅, 陈秋, 朱强. 基于滚动球变换的TIN_DDM地形形态划分及连续尺度表达[J]. 测绘学报, 2020, 49(5): 644-655. |
[15] | 赵传, 郭海涛, 卢俊, 余东行, 张保明. 基于深度残差网络的机载LiDAR点云分类[J]. 测绘学报, 2020, 49(2): 202-213. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||