[1] ZHU Xing, XU Qiang, TANG Minggao, et al. Comparison of two optimized machine learning models for predicting displacement of rainfall-induced landslide: a case study in Sichuan province, China[J]. Engineering Geology, 2017, 218: 213-222. [2] SEGONI S, PICIULLO L, GARIANO S L. A review of the recent literature on rainfall thresholds for landslide occurrence[J]. Landslides, 2018, 15(8): 1483-1501. [3] SEGONI S, PICIULLO L, GARIANO S L. Preface: landslide early warning systems: monitoring systems, rainfall thresholds, warning models, performance evaluation and risk perception[J]. Natural Hazards and Earth System Sciences, 2018, 18(12): 3179-3186. [4] MIAO Shengjun, HAO Xin, GUO Xuelian, et al. Displacement and landslide forecast based on an improved version of Saito's method together with the Verhulst-grey model[J]. Arabian Journal of Geosciences, 2017, 10(3): 53. [5] YIN Yueping, WANG Hongde, GAO Youlong, et al. Real-time monitoring and early warning of landslides at relocated Wushan town, the Three Gorges Reservoir, China[J]. Landslides, 2010, 7(3): 339-349. [6] VAN KHOA V, TAKAYAMA S. Wireless sensor network in landslide monitoring system with remote data management[J]. Measurement, 2018, 118: 214-229. [7] CORSINI A, MULAS M. Use of ROC curves for early warning of landslide displacement rates in response to precipitation (Piagneto landslide, Northern Apennines, Italy)[J]. Landslides, 2017, 14(3): 1241-1252. [8] LIU Junqi, TANG Huiming, LI Qi, et al. Multi-sensor fusion of data for monitoring of Huangtupo landslide in the Three Gorges Reservoir (China)[J]. Geomatics, Natural Hazards and Risk, 2018, 9(1): 881-891. [9] MUFUNDIRWA A, FUJII Y, KODAMA J. A new practical method for prediction of geomechanical failure-time[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(7): 1079-1090. [10] HEGDE J, ROKSETH B. Applications of machine learning methods for engineering risk assessment—a review[J]. Safety Science, 2020, 122: 104492. [11] 邓聚龙. 灰色数理资源科学导论[M]. 武汉:华中科技大学出版社,2010. DENG Julong. Introduction to grey mathematical resource science[M]. Wuhan: Huazhong University of Science & Technology Press, 2010. [12] 殷坤龙, 晏同珍. 滑坡预测及相关模型[J]. 岩石力学与工程学报, 1996, 15(1): 1-8. YIN Kunlong, YAN Tongzhen. Landslide prediction and relevant models[J]. Chinese Journal of Rock Mechanics and Engineering, 1996, 15(1): 1-8. [13] 秦四清. 斜坡失稳过程的非线性演化机制与物理预报[J]. 岩土工程学报, 2005, 27(11): 1241-1248. QIN Siqing. Nonlinear evolutionary mechanisms and physical prediction of instability of planar-slip slope[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 1241-1248. [14] KUMAR S, RANGAN P V, RAMESH M V. Design and validation of wireless communication architecture for long term monitoring of landslides[M]//MIKOŠ M, ARBANAS Ž, YIN Y P, et al. Advancing Culture of Living with Landslides. Cham: Springer, 2017: 51-60. [15] DU Juan, YIN Kunlong, LACASSE S. Displacement prediction in colluvial landslides, Three Gorges Reservoir, China[J]. Landslides, 2012, 10(2): 203-218. [16] YAO Wei, ZENG Zhigang, LIAN Cheng, et al. Training enhanced reservoir computing predictor for landslide displacement[J]. Engineering Geology, 2015, 188: 101-109. [17] CAI Zhenglong, XU Weiya, MENG Yongdong, et al. Prediction of landslide displacement based on GA-LSSVM with multiple factors[J]. Bulletin of Engineering Geology and the Environment, 2016, 75(2): 637-646. [18] LIAN Cheng, ZENG Zhigang, YAO Wei, et al. Multiple neural networks switched prediction for landslide displacement[J]. Engineering Geology, 2015, 186: 91-99. [19] LIAN Cheng, ZENG Zhigang, YAO Wei, et al. Ensemble of extreme learning machine for landslide displacement prediction based on time series analysis[J]. Neural Computing and Applications, 2014, 24(1): 99-107. [20] HUANG Faming, YIN Kunlong, ZHANG Guirong, et al. Landslide displacement prediction using discrete wavelet transform and extreme learning machine based on chaos theory[J]. Environmental Earth Sciences, 2016, 75(20): 1376. [21] ELMAN J L. Finding structure in time[J]. Cognitive Science, 1990, 14(2): 179-211. [22] MA Junwei, TANG Huiming, LIU Xiao, et al. Probabilistic forecasting of landslide displacement accounting for epistemic uncertainty: a case study in the Three Gorges Reservoir area, China[J]. Landslides, 2018, 15(6): 1145-1153. [23] CARLÀ T, INTRIERI E, DI TRAGLIA F, et al. A statistical-based approach for determining the intensity of unrest phases at Stromboli volcano (Southern Italy) using one-step-ahead forecasts of displacement time series[J]. Natural Hazards, 2016, 84(1): 669-683. [24] XU Shiluo, NIU Ruiqing. Displacement prediction of Baijiabao landslide based on empirical mode decomposition and long short-term memory neural network in Three Gorges area, China[J]. Computers & Geosciences, 2018, 111: 87-96. [25] LIAN Cheng, ZENG Zhigang, YAO Wei, et al. Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine[J]. Natural Hazards, 2013, 66(2): 759-771. [26] YANG Beibei, YIN Kunlong, LACASSE S, et al. Time series analysis and long short-term memory neural network to predict landslide displacement[J]. Landslides, 2019, 16(4): 677-694. [27] DU Han, SONG Danqing, CHEN Zhuo, et al. Prediction model oriented for landslide displacement with step-like curve by applying ensemble empirical mode decomposition and the PSO-ELM method[J]. Journal of Cleaner Production, 2020, 270: 122248. [28] HUANG N E, SHEN Zheng, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings og the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. [29] WU Zhaohua, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. [30] 柳治谱, 王勇. 基于无线传感器网络的坡面异常信号检测方法研究[J]. 传感技术学报, 2017, 30(10): 1536-1541. LIU Zhipu, WANG Yong. Research on method of slope abnormal signal detection based on wireless sensor network[J]. Chinese Journal of Sensors and Actuators, 2017, 30(10): 1536-1541. [31] 杨帆, 许强, 范宣梅, 等. 基于时间序列与人工蜂群支持向量机的滑坡位移预测研究[J]. 工程地质学报, 2019, 27(4): 880-889. YANG Fan, XU Qiang, FAN Xuanmei, et al. Prediction of landslide displacement time series based on support vector regression machine with artificial bee colony algorithm[J]. Journal of Engineering Geology, 2019, 27(4): 880-889. [32] 邓冬梅, 梁烨, 王亮清, 等. 基于集合经验模态分解与支持向量机回归的位移预测方法: 以三峡库区滑坡为例[J]. 岩土力学, 2017, 38(12): 3660-3669. DENG Dongmei, LIANG Ye, WANG Liangqing, et al. Displacement prediction method based on ensemble empirical mode decomposition and support vector machine regression: a case of landslides in Three Gorges Reservoir area[J]. Rock and Soil Mechanics, 2017, 38(12): 3660-3669. [33] ZHANG Xun, LAI K K, WANG Shouyang. A new approach for crude oil price analysis based on empirical mode decomposition[J]. Energy Economics, 2008, 30(3): 905-918. [34] GUO Zizheng, CHEN Lixia, GUI Lei, et al. Landslide displacement prediction based on variational mode decomposition and WA-GWO-BP model[J]. Landslides, 2020, 17(3): 567-583. [35] 刘人杰, 黄健, 剪鑫磊, 等. EEMD-GA-SVM模型在滑坡位移预测中的应用[J]. 人民长江, 2019, 50(11): 134-139. LIU Renjie, HUANG Jian, JIAN Xinlei, et al. Landslide deformation prediction based on EEMD-GA-SVM model[J]. Yangtze River, 2019, 50(11): 134-139. [36] LI Huajin, XU Qiang, HE Yusen, et al. Prediction of landslide displacement with an ensemble-based extreme learning machine and copula models[J]. Landslides, 2018, 15(10): 2047-2059. [37] LING Qing, ZHANG Qin, ZHANG Jing, et al. Prediction of landslide displacement using multi-kernel extreme learning machine and maximum information coefficient based on variational mode decomposition: a case study in Shaanxi, China[J]. Natural Hazards, 2021, 108(1): 925-946. [38] ZHANG Yonggang, YANG Lining. A novel dynamic predictive method of water inrush from coal floor based on gated recurrent unit model[J]. Natural Hazards, 2021, 105(2): 2027-2043. |