[1] 刘东生, 郑洪汉. 第二届全国第四纪学术会议[J]. 科学通报, 1965, 10(2): 175-176. LIU Dongsheng, ZHENG Honghan. The second national quaternary academic conference[J]. Cinese Science Bulletin, 1965, 10(2): 175-176. [2] 朱庆, 曾浩炜, 丁雨淋, 等. 重大滑坡隐患分析方法综述[J]. 测绘学报, 2019, 48(12): 1551-1561. DOI:10.11947/j.AGCS.2019.20190452. ZHU Qing, ZENG Haowei, DING Yulin, et al. A review of major potential landslide hazards analysis[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1551-1561. DOI:10.11947/j.AGCS.2019.20190452. [3] 侯东奇, 罗先启. 水库型滑坡灾害综合灾情评价模型研究[J]. 灾害学, 2005, 20(1): 26-30. HOU Dongqi, LUO Xianqi. Research on the model of reservoir landslides disaster evaluation[J]. Journal of Catastrophology, 2005, 20(1): 26-30. [4] 徐则民. 水岩化学作用对斜坡水文地质及滑坡的影响[J]. 自然灾害学报, 2007, 16(5): 16-23. XU Zemin. Effect of chemical water-rock interaction on hydrogeology and landslide of slope[J]. Journal of Natural Disasters, 2007, 16(5): 16-23. [5] 许强. 滑坡的变形破坏行为与内在机理[J]. 工程地质学报, 2012, 20(2): 145-151. XU Qiang. Theoretical studies on prediction of landslides using slope deformation process data[J]. Journal of Engineering Geology, 2012, 20(2): 145-151. [6] 吴树仁, 王涛, 石菊松, 等. 工程滑坡防治关键问题初论[J]. 地质通报, 2013, 32(12): 1871-1880. WU Shuren, WANG Tao, SHI Jusong, et al. A review of engineering landslide prevention and control[J]. Geological Bulletin of China, 2013, 32(12): 1871-1880. [7] 许强. 对滑坡监测预警相关问题的认识与思考[J]. 工程地质学报, 2020, 28(2): 360-374. XU Qiang. Understanding the landslide monitoring and early warning: consideration to practical issues[J]. Journal of Engineering Geology, 2020, 28(2): 360-374. [8] SAITO M. Forecasting the time of occurrence of a slope failure[C]//Proceedings of the 6th International Congress of Soil Mechanics and Foundation Engineering. Montreal, Canada:[s.n.],1965: 537-541. [9] 殷坤龙,晏同珍.滑坡预测及相关模型[J].岩石力学与工程学报,1996, (1):1-8. YIN Kunlong,YAN Tongzhen. Landslide prediction and relevant models [J]. Chinese Journal of Rock Mechanics and Engineering, 1996, (1):1-8. [10] GUO Zizheng, CHEN Lixia, GUI Lei, et al. Landslide displacement prediction based on variational mode decomposition and WA-GWO-BP model[J]. Landslides, 2020, 17(3): 567-583. [11] FU Zhiyong, LONG Jingjing, CHEN Wenqiang, et al. Reliability of the prediction model for landslide displacement with step-like behavior[J]. Stochastic Environmental Research and Risk Assessment, 2021, 35(11): 2335-2353. [12] NAYEK P S, GADE M. Artificial neural network-based fully data-driven models for prediction of newmark sliding displacement of slopes[J]. Neural Computing and Applications, 2022, 34(11): 9191-9203. [13] 张俊, 殷坤龙, 王佳佳, 等. 基于时间序列与PSO-SVR耦合模型的白水河滑坡位移预测研究[J]. 岩石力学与工程学报, 2015, 34(2): 382-391. ZHANG Jun, YIN Kunlong, WANG Jiajia, et al. Displacement prediction of Baishuihe landslide based on time series and PSO-SVR model[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 382-391. [14] 徐峰, 范春菊, 徐勋建, 等. 基于变分模态分解和AMPSO-SVM耦合模型的滑坡位移预测[J]. 上海交通大学学报, 2018, 52(10): 1388-1395, 1416. XU Feng, FAN Chunju, XU Xunjian, et al. Displacement prediction of landslide based on variational mode decomposition and AMPSO-SVM coupling model[J]. Journal of Shanghai Jiao Tong University, 2018, 52(10): 1388-1395, 1416. [15] 黄润秋, 许强. 斜坡失稳时间的协同预测模型[J]. 山地研究, 1997, 15(1): 7-12. HUANG Runqiu, XU Qiang. Synergetic prediction model of slope instability[J]. Journal of Mountain Research, 1997, 15(1): 7-12. [16] ZHANG Yonggang, CHEN Xinquan, LIAO Raoping, et al. Research on displacement prediction of step-type landslide under the influence of various environmental factors based on intelligent WCA-ELM in the Three Gorges Reservoir area[J]. Natural Hazards, 2021, 107(2): 1709-1729. [17] CROSTA G B, AGLIARDI F. Failure forecast for large rock slides by surface displacement measurements[J]. Canadian Geotechnical Journal, 2003, 40(1): 176-191. [18] 朱建军, 丁晓利, 陈永奇. 集成地质、力学信息和监测数据的滑坡动态模型[J]. 测绘学报, 2003, 32(3): 261-266. ZHU Jianjun, DING Xiaoli, CHEN Yongqi. Dynamic landsliding model with integration of monitoring information and mechanic information[J]. Acta Geodaetica et Cartographic Sinica, 2003, 32(3): 261-266. [19] DUNCAN J M. State of the art: limit equilibrium and finite-element analysis of slopes[J]. Journal of Geotechnical Engineering, 1996, 122(7): 577-596. [20] 陈祖煜, 弥宏亮, 汪小刚. 边坡稳定三维分析的极限平衡方法[J]. 岩土工程学报, 2001, 23(5): 525-529. CHEN Zuyu, MI Hongliang, WANG Xiaogang. A three-dimensional limit equilibrium method for slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 525-529. [21] 郑颖人, 赵尚毅, 邓楚键, 等. 有限元极限分析法发展及其在岩土工程中的应用[J]. 中国工程科学, 2006, 8(12): 39-61, 112. ZHENG Yingren, ZHAO Shangyi, DENG Chujian, et al. Development of finite element limit analysis method and its applications in geotechnical engineering[J]. Engineering Science, 2006, 8(12): 39-61, 112. [22] LOW B K, TANG W H. Efficient spreadsheet algorithm for first-order reliability method[J]. Journal of Engineering Mechanics, 2007, 133(12): 1378-1387. [23] LOW B K, ZHANG J, TANG W H. Efficient system reliability analysis illustrated for a retaining wall and a soil slope[J]. Computers and Geotechnics, 2011, 38(2): 196-204. [24] 苏国韶, 宋咏春, 燕柳斌. 高斯过程机器学习在边坡稳定性评价中的应用[J]. 岩土力学, 2009, 30(3): 675-679, 687. SU Guoshao, SONG Yongchun, YAN Liubin. Application of Gaussian process machine learning to slope stability evaluation[J]. Rock and Soil Mechanics, 2009, 30(3): 675-679, 687. [25] RANA H, BABU G L S. Regional back analysis of landslide events using TRIGRS model and rainfall threshold: an approach to estimate landslide hazard for Kodagu, India[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(4): 160. [26] GRIFFITHS D V, LANE P A. Slope stability analysis by finite elements[J]. Géotechnique, 1999, 49(3): 387-403. [27] HE Kun, MA Guotao, HU Xiewen, et al. Failure mechanism and stability analysis of a reactivated landslide occurrence in Yanyuan city, China[J]. Landslides, 2021, 18(3): 1097-1114. [28] SARKAR S, PANDIT K, DAHIYA N, et al. Quantified landslide hazard assessment based on finite element slope stability analysis for Uttarkashi-Gangnani highway in Indian Himalayas[J]. Natural Hazards, 2021, 106(3): 1895-1914. [29] LIU Zhenyu, SU Lijun, ZHANG Chonglei, et al. Investigation of the dynamic process of the Xinmo landslide using the discrete element method[J]. Computers and Geotechnics, 2020, 123: 103561. [30] PENG Dalei, XU Qiang, LIU Fangzhou, et al. Distribution and failure modes of the landslides in Heitai terrace, China[J]. Engineering Geology, 2018, 236: 97-110. [31] XU Qiang, LI Huajin, HE Yusen, et al. Comparison of data-driven models of loess landslide runout distance estimation[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(2): 1281-1294. [32] 赵超英, 刘晓杰, 张勤, 等. 甘肃黑方台黄土滑坡InSAR识别、监测与失稳模式研究[J]. 武汉大学学报(信息科学版), 2019, 44(7): 996-1007. ZHAO Chaoying, LIU Xiaojie, ZHANG Qin, et al. Research on loess landslide identification, monitoring and failure mode with InSAR technique in Heifangtai, Gansu[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 996-1007. [33] 白正伟, 张勤, 黄观文, 等. “轻终端+行业云”的实时北斗滑坡监测技术[J]. 测绘学报, 2019, 48(11): 1424-1429. DOI: 10.11947/j.AGCS.2019.20180572. BAI Zhengwei, ZHANG Qin, HUANG Guanwen, et al. Real-time BeiDou landslide monitoring technology of “light terminal plus industry cloud”[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1424-1429. DOI: 10.11947/j.AGCS.2019.20180572. [34] LIU Guang, ZBIGNIEW P, STEFANO S, et al. Land surface displacement geohazards monitoring using multi-temporal InSAR techniques[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(1): 77-87. [35] 许强, 朱星, 李为乐, 等. “天-空-地”协同滑坡监测技术进展[J]. 测绘学报,2022,51(7):1416-1436. DOI: 10.11947/j.AGCS.2022.20220320. XU Qiang, ZHU Xing, LI Weile, et al. Technical progress of space-air-ground collaborative monitoring of landslide[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1416-1436. DOI: 10.11947/j.AGCS.2022.20220320. [36] 李滨. 多级旋转型黄土滑坡形成演化机理研究[D]. 西安: 长安大学, 2009. LI Bin. Research on formation evolution mechanism of multiple rotational loess landslides[D]. Xi'an: Chang'an University, 2009. [37] 孙萍萍, 张茂省, 董英, 等. 甘肃永靖黑方台灌区潜水渗流场与斜坡稳定性耦合分析[J]. 地质通报, 2013, 32(6): 887-892. SUN Pingping, ZHANG Maosheng, DONG Ying, et al. The coupled analysis of phreatic water flow and slope stability at Heifangtai terrace, Gansu province[J]. Geological Bulletin of China, 2013, 32(6): 887-892. [38] 杨仲康. 黄土滑坡早期识别与险情预测: 以黑台灌区为例[D]. 兰州: 兰州大学, 2018. YANG Zhongkang. Early identification and danger prediction of loess landslide—a case study at irrigated area on Heitai, Gansu province, China[D]. Lanzhou: Lanzhou University, 2018. [39] LÜ Jingguo, YANG Xingbin, ZHANG Danlu, et al. High-resolution remote sensing image semi-global matching method considering geometric constraints of connection points and image texture information[J].Journal of Geodesy and Geoinformation Science,2021,4(4):97-112. [40] 张勤, 赵超英, 陈雪蓉. 多源遥感地质灾害早期识别技术进展与发展趋势[J]. 测绘学报,2022,51(6):885-896. DOI: 10.11947/j.AGCS.2022.20220132. ZHANG Qin, ZHAO Chaoying, CHEN Xuerong. Technical progress and development trend of geological hazards early identification with multi-source remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 885-896. DOI: 10.11947/j.AGCS.2022.20220132. [41] 李振洪, 朱武, 余琛, 等. 雷达影像地表形变干涉测量的机遇、挑战与展望[J]. 测绘学报,2022,51(7):1485-1519. DOI: 10.11947/j.AGCS.2022.20220224. LI Zhenhong, ZHU Wu, YU Chen, et al. Interferometric synthetic aperture radar for deformation mapping: opportunities, challenges and the outlook[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1485-1519. DOI: 10.11947/j.AGCS.2022.20220224. [42] 郭鹏. 黑方台农作物分区种植对地下水分布特征及滑坡灾害影响的研究[D]. 成都: 成都理工大学, 2019. GUO Peng. Study on the influence of crops planting in Heifangtai district on groundwater distribution characteristics and landslide disaster[D]. Chengdu: Chengdu University of Technology, 2019. [43] 王潇.灌溉入渗效应及其对斜坡稳定性的影响[D]. 西安:西北大学,2018. WANG Xiao. Infiltration law of irrigation water and its effect on slope stability in Heifangtai, Gansu [D]. Xi'an:Xi'bei University, 2018. [44] 王庆涛.黑方台灌区灌溉渗透作用模拟分析[D]. 西安:西安科技大学,2015. WANG Qingtao. Simulation analysis of irrigation infiltration on Heifangtai irrigation area [D]. Xi'an University of Science and Technology, 2015. |