[1] 深圳市交通运输局, 2020年12月交通统计信息[M].深圳:[s.n.],2020. Shenzhen Municipal Bureau of Transport.Traffic statistics for December 2020[M]. Shenzhen:[s.n.],2020. [2] LONG Ying, SHEN Zhenjiang. Finding public transportation community structure based on large-scale smart card records in Beijing[M]//Geo Journal Library.Cham:Springer International Publishing, 2015: 155-167. [3] MAEDA T N, MORI J, HAYASHI I, et al. Comparative examination of network clustering methods for extracting community structures of a city from public transportation smart card data[J]. IEEE Access, 2019, 7: 53377-53391. [4] 顾朝林, 甄峰, 张京祥. 集聚与扩散: 城市空间结构新论[M]. 南京:东南大学出版社, 2000. GU Chaolin, ZHEN Feng, Zhang Jingxiang. Agglomeration and diffusion: a new theory of urban spatial structure[M].Nanjing:Southeast University Press, 2000. [5] 高琦丽. 大数据驱动的城市活动空间动态研究[D]. 武汉: 武汉大学, 2019. GAO Qili. Big data-driven analysis on urban activity space dynamics[D].Wuhan: Wuhan University, 2019. [6] 于斌斌, 郭东. 城市群空间结构的经济效率:理论与实证[J]. 经济问题探索, 2021(7): 148-164. YU Binbin, GUO Dong. Economic efficiency of spatial structure of urban agglomeration: theory and empiric[J]. Inquiry into Economic Issues, 2021(7): 148-164. [7] LIU Xi, GONG Li, GONG Yongxi, et al. Revealing travel patterns and city structure with taxi trip data[J]. Journal of Transport Geography, 2015, 43: 78-90. [8] 郑燕巧, 焦世泰, 张晓奇. 城市结构对轨道交通系统与房地产价格关系的影响: 以北京、杭州、南京、成都4个城市为例[J]. 经济地理, 2019, 39(6): 75-85. ZHENG Yanqiao, JIAO Shitai, ZHANG Xiaoqi. Impact of urban structure on subway system and real estate price: evidence from Beijing, Hangzhou, Nanjing and Chengdu[J]. Economic Geography, 2019, 39(6): 75-85. [9] 宋雪涛, 蒲英霞, 刘大伟, 等. 利用行人轨迹挖掘城市区域功能属性[J]. 测绘学报, 2015, 44(S1): 82-88. SONG Xuetao, PU Yingxia, LIU Dawei, et al. Mining urban functional areas using pedestrians' movement trajectories[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(S1): 82-88. [10] HILLMAN M, HENDERSON I, WHALLEY A. Transport realities and planning policy[J]. Political and Economic Planning, 1976, 42(567): 196-202. [11] SONG C, QU Z, BLUMM N, et al. Limits of predictability in human mobility[J]. Science, 2010, 327(5968): 1018-1021. [12] 曹劲舟. 大数据驱动的个体出行模式与城市空间结构交互研究[J]. 测绘学报, 2021, 50(6): 849.DOI: 10.11947/j.AGCS.2021.20200287. CAO Jinzhou. Big data-driven research on the interaction of human mobility pattern and urban spatial structure[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(6): 849.DOI: 10.11947/j.AGCS.2021.20200287. [13] NEWMAN M E, GIRVAN M. Finding and evaluating community structure in networks[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 69(2): 026113. [14] VON LUXBURG U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17(4): 395-416. [15] RADICCHI F, CASTELLANO C, CECCONI F, et al. Defining and identifying communities in networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(9):2658-2663. [16] NEWMAN M E. Modularity and community structure in networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(23): 8577-8582. [17] ROSVALL M, BERGSTROM C T. Maps of random walks on complex networks reveal community structure[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(4): 1118-1123. [18] AIROLDI E M, BLEI D M, FIENBERG S E, et al. Mixed membership stochastic blockmodels[J]. Journal of Machine Learning Research, 2008, 9: 1981-2014. [19] 李欣. 大城市多中心静态结构和动态关联特征分析[J]. 地理科学, 2021, 41(6): 1061-1068. LI Xin. Static structure and dynamic correlation characteristics of polycentric structure in big city[J]. Scientia Geographica Sinica, 2021, 41(6): 1061-1068. [20] 张小东, 韩昊英, 唐拥军, 等. 基于百度迁徙数据的中国城市网络结构特征研究[J]. 地球信息科学学报, 2021, 23(10): 1798-1808. ZHANG Xiaodong, HAN Haoying, TANG Yongjun, et al. Research on the characteristics of urban network structure in China based on Baidu migration data[J]. Journal of Geo-Information Science, 2021, 23(10): 1798-1808. [21] 李智轩, 甄峰, 曹钟茗, 等. 人流视角下城市空间结构特征及规划与治理响应: 以南京市为例[J]. 城市发展研究, 2021, 28(6): 58-65. LI Zhixuan, ZHEN Feng, CAO Zhongming, et al. Characters of urban spatial structure and the response from planning and governance in the perspective of human mobility: a case study of Nanjing[J]. Urban Development Studies, 2021, 28(6): 58-65. [22] WANG Hongjian, LI Zhenhui. Region representation learning via mobility flow[C]//Proceedings of 2017 ACM on Conference on Information and Knowledge Management.Singapore:New York,USA: ACM Press, 2017: 237-246. [23] YUAN N J, ZHENG Yu, XIE Xing, et al. Discovering urban functional zones using latent activity trajectories[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(3): 712-725. [24] ALHAZZANI M, ALHASOUN F, ALAWWAD Z, et al. Urban attractors: discovering patterns in regions of attraction in cities[J]. PLoS One, 2021, 16(4): e0250204. [25] CAVALLARI S, ZHENG V W, CAI Hongyun, et al. Learning community embedding with community detection and node embedding on graphs[C]//Proceedings of 2017 ACM on Conference on Information and Knowledge Management.Singapore: ACM Press, 2017. [26] WANG Jinfeng, ZHANG Tonglin, FU Bojie. A measure of spatial stratified heterogeneity[J]. Ecological Indicators, 2016, 67: 250-256. [27] MONTERO-ODASSO M, BERGMAN H, BÉLAND F, et al. Identifying mobility heterogeneity in very frail older adults. Are frail people all the same?[J]. Archives of Gerontology and Geriatrics, 2009, 49(2): 272-277. [28] JIN Cheng, CHENG Jianquan, XU Jing. Using user-generated content to explore the temporal heterogeneity in tourist mobility[J]. Journal of Travel Research, 2018, 57(6): 779-791. [29] GOYAL P, FERRARA E. Graph embedding techniques, applications, and performance: a survey[J]. Knowledge-Based Systems, 2018, 151: 78-94. [30] OU Mingdong, CUI Peng, PEI Jian, et al. Asymmetric transitivity preserving graph embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, CA, USA: ACM Press, 2016: 1105-1114. [31] ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science (New York, N Y), 2000, 290(5500): 2323-2326. [32] PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. New York, NY, USA: ACM Press, 2014: 701-710. [33] GROVER A, LESKOVEC J. Node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, CA, USA: ACM Press, 2016: 855-864. [34] WANG Daixin, CUI Peng, ZHU Wenwu. Structural deep network embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Francisco, CA, USA: ACM Press, 2016: 1225-1234. [35] CAO Shaosheng, LU Wei, XU Qiongkai. Deep neural networks for learning graph representations[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. New York,NY,USA:ACM Press, 2016: 1145-1152. [36] ZHANG Tong, LI Yicong, YANG Hui, et al. Identifying primary public transit corridors using multi-source big transit data[J]. International Journal of Geographical Information Science, 2020, 34(6): 1137-1161. [37] TIBSHIRANI R, WALTHER G, HASTIE T. Estimating the number of clusters in a data set via the gap statistic[J]. Journal of the Royal Statistical Society B, 2001, 63(2): 411-423. [38] ROUSSEEUW P J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis[J]. Journal of Computational and Applied Mathematics, 1987, 20: 53-65. [39] SOBOLEVSKY S, CAMPARI R, BELYI A, et al. General optimization technique for high-quality community detection in complex networks[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2014, 90(1): 012811. [40] TIAN Fei, GAO Bin, CUI Qing, et al. Learning deep representations for graph clustering[C]//Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence. Québec City, Québec, Canada: ACM Press, 2014: 1293-1299. [41] KARIMI H, SHETAB-BOUSHEHRI S N, GHADIRIFARAZ B. Sustainable approach to land development opportunities based on both origin-destination matrix and transportation system constraints, case study: central business district of Isfahan, Iran[J]. Sustainable Cities and Society, 2019, 45: 499-507. [42] JIA Jia, WANG Wang.. The development of intelligent operation method of urban public infrastruc-turedriven by accurate spatio-temporal information[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(2): 27-35. [43] CHEN Lai, KANG Chaogui, YANG Chao. Understanding citizens' emotion states under the urban livability environment through social media data: a case study of Wuhan[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(2): 49-59. |