测绘学报 ›› 2023, Vol. 52 ›› Issue (3): 405-418.doi: 10.11947/j.AGCS.2023.20210419

• 摄影测量学与遥感 • 上一篇    下一篇

遥感影像直觉模糊集分割法

李玉, 李天惠, 赵泉华   

  1. 辽宁工程技术大学测绘与地理科学学院遥感科学与应用研究院, 辽宁 阜新 123000
  • 收稿日期:2021-07-21 修回日期:2022-10-08 发布日期:2023-04-07
  • 作者简介:李玉(1963-),男,博士,教授,博士生导师,研究方向为遥感数据处理理论与应用。E-mail:liyu@lntu.edu.cn
  • 基金资助:
    辽宁省自然科学基金(2022-M S-400);辽宁省教育厅重点攻关项目(LJ2020ZD003)

Remote sensing image intuitionistic fuzzy set segmentation method

LI Yu, LI Tianhui, ZHAO Quanhua   

  1. Institute for Remote Sensing Science and Application, School of Geomatics, Liaoning Technical University, Fuxin 123000, China
  • Received:2021-07-21 Revised:2022-10-08 Published:2023-04-07
  • Supported by:
    Natural Science Foundation of Liaoning Province (No. 2022-M S-400);Key Project of Education Department of Liaoning Province (No. LJ2020ZD003)

摘要: 针对传统模糊聚类算法在影像分割中忽略影像成像过程带来的光谱测度不确定性及聚类过程中像素类属非隶属性的问题,本文提出了一种基于直觉模糊集的遥感影像分割算法。首先,设计直觉模糊发生器,并通过最大熵法分析影像光谱测度不确定性,求解波段指数以将遥感影像转化为直觉模糊集,从而对影像的光谱测度不确定性进行建模。然后,在聚类过程中同时考虑像素类属隶属度和像素类属非隶属度,结合直觉模糊集间距离定义目标函数,提高算法对类属模糊信息的处理能力,实现遥感影像的精准分割。最后,分别利用本文算法和比较算法对模拟影像和真彩色遥感影像进行分割试验。分割结果的定性、定量评价表明,本文算法能够更好地处理影像本身和聚类过程中的不确定性,获得更高精度的影像分割结果。

关键词: 影像分割, 直觉模糊集, 非隶属度, 犹豫度, 直觉模糊FCM

Abstract: Aiming at the problem that the traditional fuzzy clustering algorithm ignores the uncertainty of spectral measure in the image segmentation process and the pixel category is non-membership in the clustering process, a remote sensing image segmentation algorithm based on intuitionistic fuzzy set is proposed.Firstly, an intuitionistic fuzzy generator is designed, and the spectral measure uncertainty of images is analyzed by the maximum entropy method, and the spectral measure uncertainty of images is modeled by solving the band index and transforming the remote sensing images into intuitionistic fuzzy sets.Secondly, in the process of clustering, the pixel category membership degree and pixel category non-membership degree are considered simultaneously, and the objective function is defined by combining the distance between intuitionistic fuzzy sets, so as to improve the algorithm's processing ability of category fuzzy information and achieve accurate segmentation of remote sensing images.Finally, the proposed algorithm and the comparison algorithms are used to segment the simulated image and the real color remote sensing image respectively. The qualitative and quantitative evaluation of the segmentation results show that the proposed algorithm can better deal with the uncertainty of the image itself and the clustering process, and obtain higher precision image segmentation results.

Key words: image segmentation, intuitionistic fuzzy sets, non-membership degree, hesitation degree, intuitionistic fuzzy FCM

中图分类号: