[1] 汪品先.深海浅说[M]. 上海:上海科技教育出版社, 2020. WANG Pinxian. A brief introduction to the deep sea[M]. Shanghai: Shanghai Science and Technology Education Press, 2020. [2] 刘经南, 陈冠旭, 赵建虎, 等. 海洋时空基准网的进展与趋势[J]. 武汉大学学报(信息科学版), 2019, 44(1): 17-37. LIU Jingnan, CHEN Guanxu, ZHAO Jianhu, et al. Development and trends of marine space-time frame network[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 17-37. [3] 刘经南. 全球性海洋时空基准与环境监测网构建的若干思考[R]. 杭州: 国家海洋局第二海洋研究所, 2015. LIU Jingnan. Some thoughts on the construction of a global marine space-time frame and environmental monitoring network[R]. Hangzhou: The Second Institute of Oceanography, State Oceanic Administration, 2015. [4] 杨元喜, 徐天河, 薛树强. 我国海洋大地测量基准与海洋导航技术研究进展与展望[J]. 测绘学报, 2017, 46(1): 1-8. DOI:10.11947/j.AGCS.2017.20160519. YANG Yuanxi, XU Tianhe, XUE Shuqiang. Progresses and prospects in developing marine geodetic datum and marine navigation of China[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(1): 1-8. DOI:10.11947/j.AGCS.2017.20160519. [5] YANG Yuanxi, XU Tianhe, XUE Shuqiang. Progresses and prospects of marine geodetic datum and marine navigation in China[J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1):16-24. [6] 杨元喜, 刘焱雄, 孙大军, 等.海底大地基准网建设及其关键技术[J]. 中国科学:地球科学, 2020, 50(7):936-945. YANG Yuanxi, LIU Yanxiong, SUN Dajun, et al. Seafloor geodetic network establishment and key technologies[J]. China Science: Earth Science, 2020, 50(7):936-945. [7] YANG Yuanxi, LIU Yanxiong, SUN Dajun, et al. Seafloor geodetic network establishment and key technologies[J]. Science China Earth Sciences, 2020, 63(8):1188-1198. [8] 李林阳, 吕志平, 崔阳.海底大地测量控制网研究进展综述[J]. 测绘通报, 2018(1):8-13. LI Linyang, LÜ Zhiping, CUI Yang. Summary of the research progress of seafloor geodetic control network[J]. Bulletin of Surveying and Mapping, 2018(1):8-13. [9] 孙大军, 郑翠娥, 张居成, 等.水声定位导航技术的发展与展望[J]. 中国科学院院刊, 2019, 34(3):331-338. SUN Dajun, ZHENG Cuie, ZHANG Jucheng, et al. Development and prospect for underwater acoustic positioning and navigation technology [J]. Bulletin of Chinese Academy of Sciences, 2019, 34(3):331-338. [10] CHADWELL CD, SPIESS FN, HILDEBRAND JA, et al. Sea floor strain measurement using GPS and acoustics[M]//Gravity, Geoid and Marine Geodesy. Berlin, Heidelberg: Springer, 1997: 682-689. [11] CHADWELL CD. Shipboard towers for global positioning system antennas[J]. Ocean Engineering, 2003, 30(12):1467-1487. [12] ASADA A, YABUKI T. Centimeter-level positioning on the seafloor[J]. Proceedings of the Japan Academy, 2001, 77(1):7-12. [13] FUJIMOTO H, KIDO M, OSADA Y, et al. Long-term stability of acoustic benchmarks deployed on thick sediment for GPS/acoustic seafloor positioning[M]//Accretionary Prisms and Convergent Margin Tectonics in the Northwest Pacific Basin. Dordrecht: Springer, 2011: 263-272. [14] NISHIMURA T, SATO M, SAGIYA T. Global positioning system (GPS) and GPS-acoustic observations: Insight into slip along the subduction zones around Japan[J]. Annual Review of Earth and Planetary Sciences, 2014, 42:653-674. [15] ISHIKAWA T, YOKOTA Y, WATANABE S, et al. History of on-board equipment improvement for GNSS-A observation with focus on observation frequency[J]. Frontiers in Earth Science, 2020, 8:150. [16] KIDO M, FUJIMOTO H, HINO R, et al. Progress in the project for development of GPS/acoustic technique over the last 4 years[C]//Proceedings of 2014 International Symposium on Geodesy for Earthquake and Natural Hazards. International symposium on geodesy for earthquake and natural hazards (GENAH).Matsushima,Japan: Springer, 2014: 3-10. [17] SPIESS F N, CHADWELL C D, HILDEBRAND J A, et al. Precise GPS/acoustic positioning of seafloor reference points for tectonic studies[J]. Physics of the Earth and Planetary Interiors, 1998, 108(2):101-112. [18] CHADWELL C D, SPIESS F N. Plate motion at the ridge-transform boundary of the south cleft segment of the Juan de Fuca Ridge from GPS-acoustic data[J]. Journal of Geophysical Research: Solid Earth, 2008, 113: B04415. DOI: 10.1029/2007JB004936. [19] HONSHO C, KIDO M. Comprehensive analysis of traveltime data collected through GPS-acoustic observation of seafloor crustal movements[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(10): 8583-8599. [20] HONSHO C, KIDO M, TOMITA F, et al. Offshore postseismic deformation of the 2011 Tohoku earthquake revisited: application of an improved GPS-acoustic positioning method considering horizontal gradient of sound speed structure[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(6): 5990-6009. [21] SATO M, FUJITA M, MATSUMOTO Y, et al. Improvement of GPS/acoustic seafloor positioning precision through controlling the ship's track line[J]. Journal of Geodesy, 2013, 87(9):825-842. [22] TADOKORO K, ANDO M, IKUTA R, et al. Observation of coseismic seafloor crustal deformation due to M7 class offshore earthquakes[J]. Geophysical Research Letters, 2006, 33(23): 23306-1. [23] IKUTA R, TADOKORO K, ANDO M, et al. A new GPS-acoustic method for measuring ocean floor crustal deformation: application to the Nankai Trough[J]. Journal of Geophysical Research: Solid Earth, 2008, 113: B02401. DOI: 10.1029/2006JB004875. [24] YOKOTA Y, ISHIKAWA T, WATANABE S, et al. Seafloor geodetic constraints on interplate coupling of the Nankai Trough megathrust zone[J]. Nature, 2016, 534(7607): 374-377. [25] SATO M, ISHIKAWA T, UJIHARA N, et al. Displacement above the hypocenter of the 2011 Tohoku-Oki earthquake[J]. Science, 2011, 332(6036): 1395. [26] CHEN G, LIU Y, LIU Y, et al. Improving GNSS-acoustic positioning by optimizing the ship's track lines and observation combinations[J]. Journal of Geodesy, 2020, 94(6):1-14. [27] 刘伯胜, 雷家煜.水声学原理[M]. 哈尔滨:哈尔滨工程大学出版社, 2010. LIU Bosheng, LEI Jiayu. The principle of hydroacoustics [M]. Harbin: Harbin Engineering University Press, 2010. [28] 汪德昭, 尚尔昌.水声学[M]. 2版. 北京:科学出版社, 2013. WANG Dezhao, SHANG Erchang. Hydroacoustics[M]. 2nd ed. Beijing: Science Press, 2013. [29] KIDO M, FUJIMOTO H, MIURA S, et al. Seafloor displacement at Kumano-nada caused by the 2004 off Kii Peninsula earthquakes, detected through repeated GPS/acoustic surveys[J]. Earth, planets and space, 2006, 58(7):911-915. [30] MATSUI R, KIDO M, NIWA Y, et al. Effects of disturbance of seawater excited by internal wave on GNSS-acoustic positioning[J]. Marine Geophysical Research, 2019, 40:541-555. [31] 赵建虎, 梁文彪.海底控制网测量和解算中的几个关键问题[J]. 测绘学报, 2019, 48(9):1197-1202. DOI: 10.11947/j.AGCS.2019.20190157. ZHAO Jianhu, LIANG Wenbiao. Some key points of submarine control network measurement and calculation[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9):1197-1202. DOI: 10.11947/j.AGCS.2019.20190157. [32] HJELMERVIK K T, HJELMERVIK K. Improved estimation of oceanographic climatology using empirical orthogonal functions and clustering[C]//Proceedings of 2013 MTS/IEEE OCEANS-Bergen. Bergen, Norway: IEEE, 2013: 1-5. [33] 吴永亭. LBL精密定位理论方法研究及软件系统研制[D]. 武汉: 武汉大学, 2013. WU Yongting. Study on theory and method of precise LBL positioning and development of positioning software system[D]. Wuhan: Wuhan University, 2013. [34] 孙文舟, 殷晓冬, 暴景阳, 等. 声速剖面EOF表示的第一模态解析[J]. 海洋测绘, 2019, 39(3): 31-35. SUN Wenzhou, YIN Xiaodong, BAO Jingyang, et al. The first model analysis of sound speed profile represented by EOF[J]. Hydrographic Surveying and Charting, 2019, 39(3): 31-35. [35] ISHIKAWA T, FUJITA M. Inverse method and precision improvement for seafloor positioning[J]. Journal of the Oceanographical Society of Japan, 2005, 41:27-34. [36] FUJITA M, ISHIKAWA T, MOCHIZUKI M, et al. GPS/acoustic seafloor geodetic observation: method of data analysis and its application[J]. Earth, Planets and Space, 2006, 58(3): 265-275. [37] YANG Yuanxi, QIN Xianping. Resilient observation models for seafloor geodetic positioning[J]. Journal of Geodesy, 2021, 95(7): 79. [38] YASUDA K, TADOKORO K, TANIGUCHI S, et al. Interplate locking condition derived from seafloor geodetic observation in the shallowest subduction segment at the central Nankai Trough, Japan[J]. Geophysical Research Letters, 2017, 44(8):3572-3579. [39] WATANABE S I, ISHIKAWA T, YOKOTA Y, et al. GARPOS: analysis software for the GNSS-a seafloor positioning with simultaneous estimation of sound speed structure[J]. Frontiers in Earth Science, 2020, 8: 597532. [40] TOMITA F, KIDO M, HONSHO C, et al. Development of a kinematic GNSS-acoustic positioning method based on a state-space model[J].Earth, Planets and Space, 2019, 71(1): 1-24. [41] YOKOTA Y, ISHIKAWA T, WATANABE S I. Gradient field of undersea sound speed structure extracted from the GNSS-A oceanography[J]. Marine Geophysical Research, 2019, 40(4): 493-504. [42] YOKOTA Y, ISHIKAWA T. Gradient field of undersea sound speed structure extracted from the GNSS-A oceanography: GNSS-A as a sensor for detecting sound speed gradient[J].SN Applied Sciences, 2019, 1(7): 1-11. [43] YOKOTA Y, ISHIKAWA T, WATANABE S I, et al. Kilometer-scale sound speed structure that affects GNSS-a observation: case study off the kii channel[J]. Frontiers in Earth Science, 2020, 8: 331. [44] ZHAO S, WANG Z, HE K, et al. Investigation on underwater positioning stochastic model based on acoustic ray incidence angle[J]. Applied Ocean Research, 2018, 77: 69-77. [45] WANG Z, ZHAO S, JI S, et al. Real-time stochastic model for precise underwater positioning [J]. Applied Acoustics, 2019, 150:36-43. [46] LIU Y, XUE S, QU G, et al. Influence of the ray elevation angle on seafloor positioning precision in the context of acoustic ray tracing algorithm [J]. Applied Ocean Research, 2020, 105:102403. [47] 王薪普, 薛树强, 曲国庆, 等.水下定位声线扰动分析与分段指数权函数设计 [J]. 测绘学报, 2021, 50(7):982-989. DOI: 10.11947/j.AGCS.2021.20200424. WANG Xinpu, XUE Shuqiang, QU Guoqing, et al. Disturbance analysis of underwater positioning acoustic ray and design of piecewise exponential weight function[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7):982-989. DOI: 10.11947/j.AGCS.2021.20200424. [48] 马越原,曾安敏,许扬胤,等.声线入射角随机模型在深海环境中的应用[J]. 导航定位学报, 2020, 8(3):65-68. MA Yueyuan, ZENG Anmin, XU Yangyin,et al. Application of incidence angle stochastic model of acoustic lines under deep sea environment[J]. Journal of Navigation and Positioning, 2020, 8(3):65-68. [49] 郑根, 张红梅, 冯磊, 等.基于面积差的声速剖面自适应简化方法 [J]. 测绘学报, 2018, 47(10):1415-1423. DOI: 10.11947/j.AGCS.2018.20170232. ZHENG Gen, ZHANG Hongmei, FENG Lei, et al. An adaptive simplification method of SVP based on area difference[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(10):1415-1423. DOI: 10.11947/j.AGCS.2018.20170232. [50] CHEN X, ZHANG H, ZHAO J, et al. Positioning accuracy model of sailing-circle GPS-acoustic method[J]. Earth and Space Science, 2021, e2019EA000639. [51] 王振杰, 李圣雪, 聂志喜, 等. 水声定位中一种大入射角声线跟踪方法[J]. 武汉大学学报(信息科学版), 2016, 41(10): 1404-1408. WANG Zhenjie, LI Shengxue, NIE Zhixi, et al. A large incidence angle ray-tracing method for underwater acoustic positioning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(10): 1404-1408. [52] 闫凤池, 王振杰, 赵爽, 等.顾及双程声径的常梯度声线跟踪水下定位算法 [J]. 测绘学报, 2022, 51(1):31-40. DOI: 10.11947/j.AGCS.2022.20210234. YAN Fengchi, WANG Zhenjie, ZHAO Shuang, et al. A layered constant gradient acoustic ray tracing underwater positioning algorithm considering round-trip acoustic path[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1):31-40. DOI: 10.11947/j.AGCS.2022.20210234. [53] YANG Wenlong, XUE Shugiang, LIU Yixu. P-order secant method for rapidly solving the ray inverse problem of underwater acoustic positioning[J]. Marine Geodesy, 2021, 44(1): 3-15. [54] SUN D, LI H, ZHENG C, et al. Sound velocity correction based on effective sound velocity for underwater acoustic positioning systems [J]. Applied Acoustics, 2019, 151: 55-62. [55] 赵建虎, 张红梅, 吴猛.一种基于常梯度模板插值的声线跟踪算法 [J]. 武汉大学学报(信息科学版), 2021, 46(1):71-78. ZHAO Jianhu, ZHANG Hongmei, WU Meng. A sound ray tracking algorithm based on template-interpolation of constant-gradient sound velocity[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1):71-78. [56] LIU Yixu, LU Xiushan, XUE Shuqiang, et al. A new underwater positioning model based on average sound speed[J]. Journal of Navigation, 2021, 74(5): 1009-1025. [57] YANG Fanlin, LU Xiushan, LI Jiabiao, et al. Precise positioning of underwater static objects without sound speed profile[J]. Marine Geodesy, 2011, 34(2): 138-151. [58] XIN Mingzhen, YANG Fanlin, WANG Faxing, et al. A TOA/AOA underwater acoustic positioning system based on the equivalent sound speed[J]. Journal of Navigation, 2018, 71(6): 1431-1440. [59] 赵建虎.一种无需声速测量的水下高精度导航定位方法[R]. 青岛: 第四届中国大地测量和地球物理学学术大会, 2021. ZHAO Jianhu. An underwater high-precision navigation and positioning method without sound speed measurements [R]. Qingdao: The 4th Chinese Geodesy and Geophysics Conference, 2021. [60] 邝英才, 吕志平, 王方超, 等. GNSS/声学联合定位的自适应滤波算法[J]. 测绘学报, 2020, 49(7): 854-864. DOI: 10.11947/j.AGCS.2020.20190393. KUANG Yingcai, LÜ Zhiping, WANG Fangchao, et al. The adaptive filtering algorithm of GNSS/acoustic joint positioning[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(7):854-864. DOI: 10.11947/j.AGCS.2020.20190393. [61] KUANG Y, LÜ Z, LI L, et al. Robust constrained Kalman filter algorithm considering time registration for GNSS/acoustic joint positioning [J]. Applied Ocean Research, 2021, 107: 102435. [62] KUANG Y, LÜ Z, WANG J, et al. The GNSS/acoustic one-step positioning model with attitude parameters[C]//Proceedings of the 10th China Satellite Navigation Conference (CSNC). Beijing, China: Springer. 2019. [63] WANG J, XU T, LIU Y, et al. Kalman filter based acoustic positioning of deep seafloor datum point with two-step systematic error estimation [J]. Applied Ocean Research, 2021, 114: 102817. [64] WANG J, XU T, ZHANG B, et al. Underwater acoustic positioning based on the robust zero-difference Kalman filter[J]. Journal of Marine Science and Technology, 2021, 26: 734-749. [65] CHEN G, LIU Y, LIU Y, et al. Adjustment of transceiver lever arm offset and sound speed bias for GNSS-acoustic positioning[J]. Remote Sensing, 2019, 11(13):1606. [66] 刘焱雄, 彭琳, 吴永亭,等.超短基线水声定位系统校准方法研究[J]. 武汉大学学报(信息科学版), 2006, 31(7): 610-612. LIU Yanxiong, PENG Lin, WU Yongting, et al. Calibration of transducer and transponder positions[J]. Geomatics and Information Science of Wuhan University, 2006, 31(7): 610-612. [67] LIU H, WANG Z, ZHAO S, et al. Accurate multiple ocean bottom seismometer positioning in shallow water using GNSS/acoustic technique [J]. Sensors, 2019, 19(6): 1406. [68] ZHAO S, WANG Z, NIE Z, et al. Investigation on total adjustment of the transducer and seafloor transponder for GNSS/acoustic precise underwater point positioning[J]. Ocean Engineering, 2021, 221: 108533. [69] XU P, ANDO M, TADOKORO K. Precise, three-dimensional seafloor geodetic deformation measurements using difference techniques[J]. Earth, Planets and Space, 2005, 57(9):795-808. [70] 王毅.石油勘探中水下高精度定位算法研究[D]. 青岛: 中国石油大学(华东), 2014. WANG Yi. Research on algorithms of high-precision underwater positioning in petroleum exploration[D]. Qingdao: China University of Petroleum, 2014. [71] ZHAO S, WANG Z, HE K, et al. Investigation on stochastic model refinement for precise underwater positioning [J]. IEEE Journal of Oceanic Engineering, 2019, 45(4): 1482-1496. [72] 曾安敏, 杨元喜, 明锋, 等. 海底大地基准点圆走航模式定位模型及分析[J]. 测绘学报, 2021, 50(7): 939-952. DOI: 10.11947/j.AGCS.2021.20200529. ZENG Anmin, YANG Yuanxi, MING Feng, et al. Positioning model and analysis of the sailing circle mode of seafloor geodetic datum points[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7): 939-952. DOI: 10.11947/j.AGCS.2021.20200529. [73] XUE S, YANG Y, YANG W. Single-differenced models for GNSS-acoustic seafloor point positioning[J]. Journal of Geodesy, 2022, 96(5): 1-22. [74] 张旭, 张永刚, 张健雪, 等. 一种新的声速剖面结构参数化方法[J]. 海洋学报, 2011, 33(5):54-60. ZHANG Xu, ZHANG Yonggang, ZHANG Jianxue, et al. A new model for calculating sound speed profile structure[J]. Acta Oceanologica Sinica, 2011, 33(5):54-60. [75] SAKIC P, CHUPIN C, BALLU V, et al. Geodetic seafloor positioning using an unmanned surface vehicle-contribution of direction-of-arrival observations[J]. Frontiers in Earth Science, 2021, 9:636156. [76] MUNK W H. Sound channel in an exponentially stratified ocean, with application to SOFAR[J]. The Journal of the Acoustical Society of America, 1974, 55(2):220-226. |