[1] 杨元喜,李金龙,徐君毅,等.中国北斗卫星导航系统对全球PNT用户的贡献[J]. 科学通报,2011,56(21):1734-1740. YANG Yuanxi,LI Jinlong,XU Junyi,et al. The contribution of BDS to the global PNT users[J]. Chinese Science Bulletin,2011,56(21):1734-1740. [2] ZHANG Xiaohong, HE Xiyang. Performance analysis of triple-frequency ambiguity resolution with BeiDou observations[J]. GPS Solutions, 2016, 20(2):269-281. [3] TANG Weiming, DENG Chenlong, SHI Chuang, et al. Triple-frequency carrier ambiguity resolution for BeiDou navigation satellite system[J]. GPS Solutions, 2014, 18(3):335-344. [4] 祝会忠,李军,蔚泽然,等. 长距离GPS/BDS参考站网多频载波相位整周模糊度解算方法[J]. 测绘学报,2020,49(3):300-311. DOI:10.11947/j.AGCS.2020.20190191. ZHU Huizhong,LI Jun,YU Zeran,et al. The algorithm of multi-frequency carrier phase integer ambiguity resolution with GPS/BDS between long range network RTK reference stations[J]. Acta Geodaetica et Cartographica Sinica,2020,49(3):300-311. DOI:10.11947/j.AGCS.2020.20190191. [5] LI Bofeng, LI Zhen, ZHANG Zhiteng, et al. ERTK:extra-wide-lane RTK of triple-frequency GNSS signals[J].Journal of Geodesy, 2017, 91(9):1031-1047. [6] ZHU Huizhong, LU Yangyang, TANG Longjiang, et al. A comparative study of BDS triple-frequency ambiguity fixing approaches for RTK positioning[J]. Sensors (Basel, Switzerland), 2021, 21(7):2565. [7] 祝会忠. 基于非差误差改正数的长距离单历元GNSS网络RTK算法研究[J]. 测绘学报,2015,44(1):116. DOI:10.11947/j.AGCS.2015.20140358. ZHU Huizhong. The study of GNSS network RTK algorithm between long range at single epoch using undifference error corrections[J]. Acta Geodaetica et Cartographica Sinica,2015,44(1):116. DOI:10.11947/j.AGCS.2015.20140358. [8] LI Bofeng, SHEN Yunzhong, FENG Yanming, et al. GNSS ambiguity resolution with controllable failure rate for long baseline network RTK[J].Journal of Geodesy, 2014, 88(2):99-112. [9] GENG Jianghui, GUO Jiang, CHANG Hua, et al. Toward global instantaneous decimeter-level positioning using tightly coupled multi-constellation and multi-frequency GNSS[J]. Journal of Geodesy, 2019, 93(7):977-991. [10] ZHANG Ming, LIU Hui, BAI Zhengdong, et al. Fast ambiguity resolution for long-range reference station networks with ionospheric model constraint method[J]. GPS Solutions, 2017, 21(2):617-626. [11] 高扬骏,吕志伟,周朋进,等. 北斗中长基线三频模糊度解算的自适应抗差滤波算法[J]. 测绘学报,2019,48(3):295-302. DOI:10.11947/j.AGCS.2019.20180379. GAO Yangjun,LÜ Zhiwei,ZHOU Pengjin,et al. Adaptive robust filtering algorithm for BDS medium and long baseline three carrier ambiguity resolution[J]. Acta Geodaetica et Cartographica Sinica,2019,48(3):295-302. DOI:10.11947/j.AGCS.2019.20180379. [12] 李博峰, 沈云中, 周泽波. 中长基线三频GNSS模糊度的快速算法[J]. 测绘学报, 2009, 38(4):296-301. LI Bofeng, SHEN Yunzhong, ZHOU Zebo. A new method for medium and long range three frequency GNSS rapid ambiguity resolution[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(4):296-301. [13] ZHANG Xiaohong, REN Xiaodong, CHEN Jun, et al. Investigating GNSS PPP-RTK with external ionospheric constraints[J]. Satellite Navigation, 2022, 3(1):6. [14] ODIJK D. Weighting ionospheric corrections to improve fast GPS positioning over medium distances[C]//Proceeding of the 13th International Technical Meeting of the Satellite Division of the Institute of Navigation. Salt Lake, UT, USA:[s.n.], 2000. [15] WIELGOSZ P. Quality assessment of GPS rapid static positioning with weighted ionospheric parameters in generalized least squares[J]. GPS Solutions, 2011, 15(2):89-99. [16] BASILE F, MOORE T, HILL C, et al. Multi-frequency precise point positioning using GPS and Galileo data with smoothed ionospheric corrections[C]//Proceedings of 2018 IEEE/ION Position, Location and Navigation Symposium. Monterey, CA, USA:IEEE, 2018. [17] TU Rui. A real-time ionospheric model based on GNSS precise point positioning[J]. Advances in Space Research, 2013, 52(6):1125-1134. [18] 祝会忠, 雷啸挺, 徐爱功, 等. 顾及GEO卫星约束的长距离BDS三频整周模糊度解算[J]. 测绘学报, 2020, 49(9):1222-1234. DOI:10.11947/j.AGCS.2020.20200263. ZHU Huizhong, LEI Xiaoting, XU Aigong, et al. The integer ambiguity resolution of BDS triple-frequency between long range stations with GEO satellite constraints[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9):1222-1234. DOI:10.11947/j.AGCS.2020.20200263. [19] SHI C, GU S, LOU Y, et al. An improved approach to model ionospheric delays for single-frequency Precise Point Positioning[J]. Advances in Space Research, 2012, 49(12):1698-1708. [20] ZHAO Qile, WANG Yintong, GU Shengfeng, et al. Refining ionospheric delay modeling for undifferenced and uncombined GNSS data processing[J]. Journal of Geodesy, 2019, 93(4):545-560. [21] ALBASHIR A, ABDELLATIF SAMI K, AHMEDELTIGANI M. Enhancing the accuracy of GPS point positioning by modeling the ionospheric propagation delay[C]//Proceedings of 2018 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE). Khartoum, Sudan:IEEE, 2018. [22] 周锋,徐天河.GPS/BDS/Galileo三频精密单点定位模型及性能分析[J].测绘学报,2021,50(1):61-70. DOI:10.11947/j.AGCS.2021.20200146. ZHOU Feng, XU Tianhe. Modeling andassessment of GPS/BDS/Galileo triple-frequency precise point positioning[J]. Acta Geodaetica et Cartographica Sinica,2021,50(1):61-70. DOI:10.11947/j.AGCS.2021.20200146. [23] 葛茂荣, 刘经南. GPS定位中对流层折射估计研究[J]. 测绘学报, 1996, 25(4):285-291. GE Maorong, LIU Jingnan. The estimation methods for tropospheric delays in global positioning system[J]. Acta Geodaetica et Cartographica Sinica, 1996, 25(4):285-291. [24] FAN Haopeng, SUN Zhongmiao, ZHANG Liping, et al. A two-step estimation method of troposphere delay with consideration of mapping function errors[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1):76-84. [25] 毛健,崔铁军,李晓丽,等. 融合大气数值模式的高精度对流层天顶延迟计算方法[J]. 测绘学报,2019,48(7):862-870. DOI:10.11947/j.AGCS.2019.20190003. MAO Jian,CUI Tiejun,LI Xiaoli,et al. A hight-accuracy method for tropospheric zenith delay error correction by fusing atmospheric numerical models[J]. Acta Geodaetica et Cartographica Sinica,2019,48(7):862-870. DOI:10.11947/j.AGCS.2019.20190003. [26] TANG Weiming, LIU Wenjian, ZOU Xuan, et al. Improved ambiguity resolution for URTK with dynamic atmosphere constraints[J]. Journal of Geodesy, 2016, 90(12):1359-1369. [27] ZHANG Baocheng, HOU Pengyu, ZHA Jiuping, et al. PPP-RTK functional models formulated with undifferenced and uncombined GNSS observations[J].Satellite Navigation, 2022, 3(1):1-15. [28] 陈正生,张清华,李林阳,等. 电离层延迟变化自模型化的载波相位平滑伪距算法[J]. 测绘学报,2019,48(9):1107-1118. DOI:10.11947/j.AGCS.2019.20180404. CHEN Zhengsheng,ZHANG Qinghua,LI Linyang,et al. An improved carrier phase smoothing pseudorange algorithm with self-modeling of ionospheric delay variation[J]. Acta Geodaetica et Cartographica Sinica,2019,48(9):1107-1118. DOI:10.11947/j.AGCS.2019.20180404. [29] ZHU Huizhong, LI Jun, TANG Longjiang, et al. Improving the stochastic model of ionospheric delays for BDS long-range real-time kinematic positioning[J]. Remote Sensing, 2021, 13(14):2739. [30] VONDRAK J. Problem of Smoothing Observation Data Ⅱ[J].Bulletin of the Astronomical Institute of Czechoslovakia, 1977, 28(2):84-89. [31] VONDRAK J. Problem of Smoothing Observation Data[J]. Bulletin of the Astronomical Institute of Czechoslovakia, 1969, 20(6):349-353. [32] ZHENG D W, ZHONG P, DING X L, et al. Filtering GPS time-series using a Vondrak filter and cross-validation[J]. Journal of Geodesy, 2005, 79(6):363-369. [33] VONDRAK J. A contribution to the problem of smoothing observational data[J].Bulletin of the Astronomical Institutes of Czechoslovakia, 1969, 20(6):349. [34] 吴芸芸, 朱建军, 左廷英. RMSE的平方与平滑度的线性组合的平方根作为Vondrak滤波评价标准的探讨[J]. 武汉大学学报(信息科学版), 2012, 37(10):1212-1214, 1220. WU Yunyun, ZHU Jianjun, ZUO Tingying. Investigation on the square root of the linear combination of the squre of RMSE and smoothness for the vondrak filter's evaluation[J]. Geomatics and Information Science of Wuhan University, 2012, 37(10):1212-1214, 1220. |