测绘学报 ›› 2023, Vol. 52 ›› Issue (10): 1760-1771.doi: 10.11947/j.AGCS.2023.20220443

• 地图学与地理信息 • 上一篇    下一篇

时空数据插值的杨赤中滤波法

阳洁, 刘启亮, 冯天琪, 邓敏   

  1. 中南大学地球科学与信息物理学院地理信息系, 湖南 长沙 410083
  • 收稿日期:2022-07-13 修回日期:2022-10-10 发布日期:2023-10-31
  • 通讯作者: 刘启亮 E-mail:qiliang.liu@csu.edu.cn
  • 作者简介:阳洁(1998-),男,博士生,研究方向为杨赤中滤波与推估方法。E-mail:Jie_yang@csu.edu.cn
  • 基金资助:
    国家自然科学基金(42271484;41971353);湖南省自然科学基金(2021JJ20058)

A spatio-temporal interpolation method based on Yang Chizhong filtering

YANG Jie, LIU Qiliang, FENG Tianqi, DENG Min   

  1. Department of Geo-informatics, School of Geosciences and Info-physics, Central South University, Changsha 410083, China
  • Received:2022-07-13 Revised:2022-10-10 Published:2023-10-31
  • Supported by:
    The National Natural Science Foundation of China (Nos. 42271484;41971353);Natural Science Foundation of Hunan Province, China (No. 2021JJ20058)

摘要: 时空数据插值是时空数据分析的一项基础性任务,其核心问题在于建模时空自相关结构。当时空数据非平稳、分布稀疏时,现有方法难以准确建模时空自相关结构,直接影响了插值的精度与可靠性。本文基于空间域复合变量理论,采用几何学与统计学相结合的策略对时空自相关结构进行建模,提出了一种基于杨赤中滤波的时空数据插值方法。该方法首先耦合杨赤中滤波与时空积和模型,建立定量描述时空自相关结构的时空基本变化函数;然后,基于时空基本变化函数,构建满足最优线性无偏估计准则的时空数据插值模型。采用模拟数据、2000—2009年我国大陆区域年平均气温与2014年5月—2015年4月北京市日均PM2.5浓度时空数据集进行试验验证,结果表明:本文方法的时空插值精度明显优于当前的3种代表性时空插值方法,且不需要时空平稳性假设,可以更好地适应分布稀疏的时空数据集。

关键词: 时空插值, 杨赤中滤波, 时空积和模型, 时空自相关, 时空非平稳

Abstract: Spatio-temporal interpolation is a fundamental task of spatio-temporal data analysis. Modeling of spatio-temporal dependencies in geospatial data plays a key role in spatio-temporal interpolation. When geospatial data is non-stationary and sparsely distributed, modeling of spatio-temporal dependencies is still challenging. On that account, this study developed a spatio-temporal interpolation method based on Yang Chizhong filtering. This method combined statistical and geometric methods to model spatio-temporal dependencies in geospatial data. Specifically, Yang Chizhong filtering and spatio-temporal product-sum model were first employed to construct the spatio-temporal fundamental variation function that quantitatively describes spatio-temporal dependencies in geospatial data. Then, an optimal linear unbiased estimation model for spatio-temporal data interpolation was built using the spatio-temporal fundamental variation function. We utilized simulated dataset, annual average temperature dataset in mainland China from 2000 to 2009 and daily average PM2.5 concentration dataset in Beijing from May 2014 to April 2015 for experimental verification. Experimental results on both simulated and real-world datasets showed that the proposed method outperforms the three state-of-the-art methods, e.g., spatio-temporal Kriging, point estimation model of biased hospitals-based area disease estimation, and lightweight ensemble methods. The proposed method does not require the assumption of spatio-temporal stationarity, and can better adapt to sparsely distributed geospatial data.

Key words: spatio-temporal interpolation, Yang Chizhong filtering, spatio-temporal product-sum model, spatio-temporal dependency, spatio-temporal non-stationary

中图分类号: