[1] 李树涛, 李聪妤, 康旭东. 多源遥感图像融合发展现状与未来展望[J]. 遥感学报, 2021, 25(1):148-166. LI Shutao, LI Congyu, KANG Xudong. Development status and future prospects of multi-source remote sensing image fusion[J]. National Remote Sensing Bulletin, 2021, 25(1):148-166. [2] 赵诣, 蒋弥. 极化SAR参数优化与光学波谱相结合的面向对象土地覆盖分类[J]. 测绘学报, 2019, 48(5):609-617. DOI:10.11947/j.AGCS.2019.20170746. ZHAO Yi, JIANG Mi. Integration of SAR polarimetric parameters and multi-spectral data for object-based land cover classification[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(5):609-617. DOI:10.11947/j.AGCS.2019.20170746. [3] XU Zhe, ZHU Jinbiao, GENG Jie, et al. Triplet attention feature fusion network for SAR and optical image land cover classification[C]//Proceedings of 2021 IEEE International Geoscience and Remote Sensing Symposium. Brussels:IEEE, 2021:4256-4259. [4] KULKARNI S C, REGE P P. Pixel level fusion techniques for SAR and optical images:a review[J]. Information Fusion, 2020, 59:13-29. [5] 陈应霞, 陈艳, 刘丛. 遥感影像融合AIHS转换与粒子群优化算法[J]. 测绘学报, 2019, 48(10):1296-1304. DOI:10.11947/j.AGCS.2019.20180509. CHEN Yingxia, CHEN Yan, LIU Cong. Joint AIHS and particle swarm optimization for pan-sharpening[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(10):1296-1304. DOI:10.11947/j.AGCS.2019.20180509. [6] BATUR E, MAKTAV D. Assessment of surface water quality by using satellite images fusion based on PCA method in the Lake Gala, Turkey[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(5):2983-2989. [7] 童莹萍, 全英汇, 冯伟, 等. 基于空谱信息协同与Gram-Schmidt变换的多源遥感图像融合方法[J]. 系统工程与电子技术, 2022, 44(7):2074-2083. TONG Yingping, QUAN Yinghui, FENG Wei, et al. Multi-source remote sensing image fusion method based on spatial-spectrum information collaboration and Gram-Schmidt transform[J]. Systems Engineering and Electronics, 2022, 44(7):2074-2083. [8] WU Yuanyuan, FENG Siling, LIN Cong, et al. A three stages detail injection network for remote sensing images pansharpening[J]. Remote Sensing, 2022, 14(5):1077. [9] DANIEL E. Optimum wavelet-based homomorphic medical image fusion using hybrid genetic-grey wolf optimization algorithm[J]. IEEE Sensors Journal, 2018, 18(16):6804-6811. [10] ARIF M, WANG Guojun. Fast curvelet transform through genetic algorithm for multimodal medical image fusion[J]. Soft Computing, 2020, 24(3):1815-1836. [11] AISHWARYA N, BENNILA THANGAMMAL C. Visible and infrared image fusion using DTCWT and adaptive combined clustered dictionary[J]. Infrared Physics & Technology, 2018, 93:300-309. [12] WANG Zeyu, LI Xiongfei, DUAN Haoran, et al. Medical image fusion based on convolutional neural networks and non-subsampled contourlet transform[J]. Expert Systems with Applications, 2021, 171:114574. [13] 侯昭阳, 吕开云, 龚循强, 等. 一种结合低级视觉特征和PAPCNN的NSST域遥感影像融合方法[J]. 武汉大学学报(信息科学版), 2023, 48(6):960-969. HOU Zhaoyang, LÜ Kaiyun, GONG Xunqiang, et al. Remote sensing image fusion based on low-level visual features and PAPCNN in NSST domain[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6):960-969. [14] ZHANG Yi, JIN Mingming, HUANG Gang. Medical image fusion based on improved multi-scale morphology gradient-weighted local energy and visual saliency map[J]. Biomedical Signal Processing and Control, 2022, 74:103535. [15] ZHANG Yu, BAI Xiangzhi, WANG Tao. Boundary finding based multi-focus image fusion through multi-scale morphological focus-measure[J]. Information Fusion, 2017, 35:81-101. [16] YIN Ming, LIU Xiaoning, LIU Yu, et al. Medical image fusion with parameter-adaptive pulse coupled neural network in nonsubsampled shearlet transform domain[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(1):49-64. [17] HOU Zhaoyang, LÜ Kaiyun, GONG Xunqiang, et al. A remote sensing image fusion method combining low-level visual features and parameter-adaptive dual-channel pulse-coupled neural network[J]. Remote Sensing, 2023, 15(2):344. [18] LIU Yu, LIU Shuping, WANG Zengfu. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24:147-164. [19] LIU Yu, WANG Zengfu. Simultaneous image fusion and denoising with adaptive sparse representation[J]. IET Image Processing, 2015, 9(5):347-357. [20] LIU Yu, CHEN Xun, WARD R K, et al. Image fusion with convolutional sparse representation[J]. IEEE Signal Processing Letters, 2016, 23(12):1882-1886. [21] LIU Yu, CHEN Xun, WARD R K, et al. Medical image fusion via convolutional sparsity based morphological component analysis[J]. IEEE Signal Processing Letters, 2019, 26(3):485-489. [22] SHREYAMSHA KUMAR B K. Image fusion based on pixel significance using cross bilateral filter[J]. Signal, Image and Video Processing, 2015, 9(5):1193-1204. [23] JIAN Lihua, YANG Xiaomin, ZHOU Zhili, et al. Multi-scale image fusion through rolling guidance filter[J]. Future Generation Computer Systems, 2018, 83:310-325. [24] MA Jiayi, CHEN Chen, LI Chang, et al. Infrared and visible image fusion via gradient transfer and total variation minimization[J]. Information Fusion, 2016, 31:100-109. [25] 成飞飞, 付志涛, 黄亮, 等. 结合自适应PCNN的非下采样剪切波遥感影像融合[J]. 测绘学报, 2021, 50(10):1380-1389. DOI:10.11947/j.AGCS.2021.20200589. CHENG Feifei, FU Zhitao, HUANG Liang, et al. Non-subsampled shearlet transform remote sensing image fusion combined with parameter-adaptive PCNN[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10):1380-1389.DOI:10.11947/j.AGCS.2021.20200589. [26] TAN Wei, TIWARI P, PANDEY H M, et al. Multimodal medical image fusion algorithm in the era of big data[J/OL].[2022-09-15]. https://doi.org/10.1007/s00521-020-05173-2. [27] PANIGRAHY C, SEAL A, MAHATO N K. Fractal dimension based parameter adaptive dual channel PCNN for multi-focus image fusion[J]. Optics and Lasers in Engineering, 2020, 133:106141. [28] TALUKDAR S, SINGHA P, MAHATO S, et al. Land-use land-cover classification by machine learning classifiers for satellite observations-a review[J]. Remote Sensing, 2020, 12(7):1135. [29] MA Lei, LI Manchun, MA Xiaoxue, et al. A review of supervised object-based land-cover image classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130:277-293. [30] BELGIU M, DRAGUT L. Random forest in remote sensing:a review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114:24-31. |