
测绘学报 ›› 2023, Vol. 52 ›› Issue (12): 2164-2177.doi: 10.11947/j.AGCS.2023.20220616
杨宇妍1, 臧玉府1, 肖雄武2, 管海燕1, 彭代峰1
收稿日期:2022-10-28
修回日期:2023-06-12
发布日期:2024-01-03
通讯作者:
臧玉府
E-mail:3dmapzangyufu@nuist.edu.cn
作者简介:杨宇妍(1999-),女,硕士生,研究方向为三维点云智能处理。E-mail:YangYuyan7768@163.com
基金资助:YANG Yuyan1, ZANG Yufu1, XIAO Xiongwu2, GUAN Haiyan1, PENG Daifeng1
Received:2022-10-28
Revised:2023-06-12
Published:2024-01-03
Supported by:摘要: 现有滤波方法在地形复杂、高程突变等区域往往会错误滤除大量地面点,降低了滤波结果的准确性且严重影响了后续应用。为此,本文提出一种融合断裂线约束模型的采样线高效滤波方法。首先,基于点曲率及邻域范围内距离之和创建约束能量项,改进Snake能量模型,并通过能量函数最小化提取断裂线特征;然后,从测区中获取点云序列等间距构成采样线,构建正三角模型、计算点云平坦度融合断裂线约束过滤每条采样线上的点;最后,根据采样线上的地面点通过改进最小二乘法拟合全局曲面,并结合其实际高程值过滤区域非地面点。为验证本文方法的有效性,本文采用5份不同区域场景的机载激光点云数据进行试验分析。结果表明,本文方法在效率和精度方面优于参照方法,平均滤波精度高达96.58%,尤其在地形断裂区域处滤波效果显著。
中图分类号:
杨宇妍, 臧玉府, 肖雄武, 管海燕, 彭代峰. 基于地形断裂线约束的机载激光点云高精度滤波方法[J]. 测绘学报, 2023, 52(12): 2164-2177.
YANG Yuyan, ZANG Yufu, XIAO Xiongwu, GUAN Haiyan, PENG Daifeng. An accurate breakline-aware filtering method for airborne laser scanning point clouds[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(12): 2164-2177.
| [1] HU Han, DING Yulin, ZHU Qing, et al. An adaptive surface filter for airborne laser scanning point clouds by means of regularization and bending energy[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 92: 98-111. [2] YANG Bisheng, HUANG Ronggang, DONG Zhen, et al. Two-step adaptive extraction method for ground points and breaklines from LiDAR point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119: 373-389. [3] 宿殿鹏, 闫豆豆, 陈亮, 等. 机载LiDAR测深点云SVB联合滤波算法[J]. 测绘学报, 2023, 52(4): 614-623. DOI: 10.11947/j.AGCS.2023.20220248. SU Dianpeng, YAN Doudou, CHEN Liang, et al. Surface-volume-bottom joint-filtering algorithm for airborne LiDAR bathymetric point cloud[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4): 614-623. DOI: 10.11947/j.AGCS.2023.20220248. [4] 汪文琪, 李宗春, 付永健, 等. 一种多尺度自适应点云坡度滤波算法[J]. 武汉大学学报(信息科学版), 2022, 47(3): 438-446. WANG Wenqi, LI Zongchun, FU Yongjian, et al. A multi-scale adaptive slope filtering algorithm for point cloud[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3): 438-446. [5] SUSAKI J. Adaptive slope filtering of airborne LiDAR data in urban areas for digital terrain model (DTM) generation[J]. Remote Sensing, 2012, 4(6): 1804-1819. [6] VOSSELMAN G. Slope based filtering of laser altimetry data[EB/OL].[2022-10-28]. https://www.researchgate.net/publication/228719860_Slope_based_filtering_of_laser_altimetry_data. [7] LI Y, YONG B, VAN OOSTEROM P, et al. Airborne LiDAR data filtering based on geodesic transformations of mathematical morphology[J]. Remote Sensing, 2017, 9(11): 1104. [8] MONGUS D, LUKAČ N, ŽALIK B. Ground and building extraction from LiDAR data based on differential morphological profiles and locally fitted surfaces[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93: 145-156. [9] HUI Zhenyang, HU Youjian, YEVENYO Y, et al. An improved morphological algorithm for filtering airborne LiDAR point cloud based on multi-level Kriging interpolation[J]. Remote Sensing, 2016, 8(1): 35. [10] ZHAO Dineng, WU Ziyin, ZHOU Jieqiong, et al. Parameter group optimization by combining CUBE with surface filtering and its application[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2): 81-92. [11] LIN Xiangguo, ZHANG Jixian. Segmentation-based filtering of airborne LiDAR point clouds by progressive densification of terrain segments[J]. Remote Sensing, 2014, 6(2): 1294-1326. [12] AXELSSON P. DEM generation from laser scanner data using adaptive TIN models[EB/OL]. [2022-10-28]. https://www.isprs.org/proceedings/XXXIII/congress/part4/111_XXXIII-part4.pdf?origin=publication_detail. [13] CHEN Qi, WANG Huan, ZHANG Hanchao, et al. A point cloud filtering approach to generating DTMs for steep mountainous areas and adjacent residential areas[J]. Remote Sensing, 2016, 8(1): 71. [14] ZHANG Wuming, QI Jianbo, WAN Peng, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6): 501. [15] YIN Huilin, YANG Xiaohan, HE Chao. Spherical coordinates based methods of ground extraction and objects segmentation using 3D LiDAR sensor[J]. IEEE Intelligent Transportation Systems Magazine, 2016, 8(1): 61-68. [16] 郑辑涛, 张涛. 基于可变半径圆环和B样条拟合的机载LiDAR点云滤波[J]. 测绘学报, 2015, 44(12): 1359-1366. ZHENG Jitao, ZHANG Tao. Filtering of airborne LiDAR point cloud based on variable radius circle and B-spline fitting[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(12): 1359-1366. [17] SÁNCHEZ J M,ÁLVAREZ Á V, VILARIÑO D L, et al. Fast ground filtering of airborne LiDAR data based on iterative scan-line spline interpolation[J]. Remote Sensing, 2019, 11(19): 2256. [18] KASS M, WITKIN A, TERZOPOULOS D. Snakes: active contour models[J]. International Journal of Computer Vision, 1988, 1(4): 321-331. [19] 贺美芳, 周来水, 神会存. 散乱点云数据的曲率估算及应用[J]. 南京航空航天大学学报, 2005, 37(4): 515-519. HE Meifang, ZHOU Laishui, SHEN Huicun. Curvature estimation of scattered-point cloud data and its application[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2005, 37(4): 515-519. [20] ROUL P, PRASAD GOURA V M K. B-spline collocation methods and their convergence for a class of nonlinear derivative dependent singular boundary value problems[J]. Applied Mathematics and Computation, 2019, 341: 428-450. [21] ABDI H, WILLIAMS L J. Principal component analysis[J]. WIREs Computational Statistics, 2010, 2(4): 433-459. [22] 方莉娜, 卢丽靖, 赵志远, 等. 车载激光点云道路边界提取的Snake方法[J]. 测绘学报, 2020, 49(11): 1438-1450. DOI: 10.11947/j.AGCS.2020.20190370. FANG Lina, LU Lijing, ZHAO Zhiyuan, et al. Road boundaries extraction from mobile laser scanning point clouds based on discrete point Snake[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(11): 1438-1450. DOI: 10.11947/j.AGCS.2020.20190370. [23] 张志超. 融合机载与地面LIDAR数据的建筑物三维重建研究[D]. 武汉: 武汉大学, 2010. ZHANG Zhichao. Airborne and terrestrial LiDAR data fusion for 3D building reconstruction[D]. Wuhan: Wuhan University, 2010. [24] 赵传, 郭海涛, 卢俊, 等. 结合区域增长与RANSAC的机载LiDAR点云屋顶面分割[J]. 测绘学报, 2021, 50(5): 621-633. DOI: 10.11947/j.AGCS.2021.20200270. ZHAO Chuan, GUO Haitao, LU Jun, et al. Roof segmentation from airborne LiDAR by combining region growing with random sample consensus[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5): 621-633. DOI: 10.11947/j.AGCS.2021.20200270. [25] 郭杰, 刘建永, 张有亮, 等. 基于扫描线自适应角度限差法的地面点云滤波[J]. 计算机应用, 2011, 31(8): 2243-2245. GUO Jie, LIU Jianyong, ZHANG Youliang, et al. Filtering of ground point cloud based on scanning line and self-adaptive angle-limitation algorithm[J]. Journal of Computer Applications, 2011, 31(8): 2243-2245. [26] 詹总谦, 胡孟琦, 满益云. 多尺度区域生长点云滤波地表拟合法[J]. 测绘学报, 2020, 49(6): 757-766. DOI: 10.11947/j.AGCS.2020.20190142. ZHAN Zongqian, HU Mengqi, MAN Yiyun. Multi-scale region growing point cloud filtering method based on surface fitting[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 757-766. DOI: 10.11947/j.AGCS.2020.20190142. [27] SITHOLE G. Filtering of laser altimetry data using a slope adaptive filter[EB/OL].[2022-10-28]. https://www.isprs.org/proceedings/XXXIV/3-W4/pdf/Sithole.pdf. [28] BROVELLI M, CANNATA M, LONGONI U. Managing and processing LiDAR data within GRASS[C]// Proceedings of 2002 Open Source GIS-GRASS Users Conference. Trento:[s.n.], 2002: 1-29. [29] ZHANG Jixian, LIN Xiangguo. Filtering airborne LiDAR data by embedding smoothness-constrained segmentation in progressive TIN densification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 81: 44-59. |
| [1] | 曹云刚, 杨鹏, 龚江波, 朱高, 沈星宇. 空间关系增强与异构特征融合相结合的道路信息提取方法[J]. 测绘学报, 2025, 54(12): 2219-2232. |
| [2] | 张津, 冯凡, 戴晨光, 张振超, 于英, 刘冰. 基于CNN-ViT混合特征优化的小样本高光谱图像分类[J]. 测绘学报, 2025, 54(12): 2233-2246. |
| [3] | 侯昭阳, 闫浩文, 张黎明, 马荣娟, 屈睿涛. 基于耦合神经P系统与区块链的遥感影像零水印版权保护方法[J]. 测绘学报, 2025, 54(12): 2247-2261. |
| [4] | 熊强. 基于空间结构特征的多模态遥感图像匹配方法研究[J]. 测绘学报, 2025, 54(12): 2288-2288. |
| [5] | 冯雨宁. 青藏高原多级气候分区研究[J]. 测绘学报, 2025, 54(12): 2293-2293. |
| [6] | 童小华, 黄荣, 曹佳瑞, 刘宸, 王蓉, 徐聿升, 叶真, 金雁敏, 刘世杰, 柳思聪, 冯永玖, 谢欢. 月球与近地行星三维形貌重建的智能方法综述:研究进展与未来挑战[J]. 测绘学报, 2025, 54(11): 1917-1933. |
| [7] | 武昊, 侯东阳, 张俊, 张平, 刘玉轩, 杜磊, 康路, 程滔, 陈军. 动态服务计算支持的自然资源遥感监测监管平台关键技术研究[J]. 测绘学报, 2025, 54(11): 1992-2008. |
| [8] | 龚希, 陈占龙, 郑恒强, 胡胜, 张洪艳. 融合迁移特征空间和语义信息的遥感影像场景分类方法[J]. 测绘学报, 2025, 54(11): 2009-2025. |
| [9] | 衣雪峰. 点云与影像融合的隧洞岩体结构信息自动提取方法研究[J]. 测绘学报, 2025, 54(11): 2098-2098. |
| [10] | 马开森. 地面激光雷达林分点云单木分离及参数提取研究[J]. 测绘学报, 2025, 54(11): 2100-2100. |
| [11] | 师悦龄. 基于SAR干涉和偏移量追踪估计的高山冰川冰湖动态演变监测及其关联特征分析[J]. 测绘学报, 2025, 54(11): 2103-2103. |
| [12] | 李康宁. 全球城市热岛遥感研究:时空特征、变化模式及驱动分析[J]. 测绘学报, 2025, 54(11): 2105-2105. |
| [13] | 黄鑫, 叶健, 刘骋冰, 曾秋雨, 郭万新, 郭志凯. 一种兼具精度与可解释性的Stacking-SHAP滑坡易发性预测集成方法[J]. 测绘学报, 2025, 54(10): 1826-1840. |
| [14] | 熊新, 靳国旺, 崔瑞兵, 李烁, 杨鹤. 利用秩自相似特征的光学和SAR图像快速匹配方法[J]. 测绘学报, 2025, 54(10): 1852-1862. |
| [15] | 张志力, 姜慧伟, 胡翔云. 面向极简交互的遥感地物精确批量提取框架[J]. 测绘学报, 2025, 54(10): 1863-1876. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||