[1] 邓起东, 张培震, 冉勇康, 等. 中国活动构造基本特征[J]. 中国科学(D辑: 地球科学), 2002, 32(12): 1020-1030. DENG Qidong, ZHANG Peizhen, RAN Yongkang, et al.Basic characteristics of active tectonics of China[J]. Science in China Series D: Earth Sciences, 2002, 32(12): 1020-1030. [2] 张培震, 邓起东, 张国民, 等. 中国大陆的强震活动与活动地块[J]. 中国科学(D辑: 地球科学), 2003, 33(S1): 12-20. ZHANG Peizhen, DENG Qidong, ZHANG Guomin, et al.Activity of strong earthquake and active block in Mainland China[J]. Science in China Series D: Earth Science, 2003, 33(S1): 12-20. [3] JOLIVET R, LASSERRE C, DOIN M P, et al. Spatio-temporal evolution of aseismic slip along the Haiyuan fault, China: implications for fault frictional properties[J]. Earth and Planetary Science Letters, 2013, 377/378: 23-33. [4] WANG Wei, QIAO Xuejun, YANG Shaomin, et al. Present-day velocity field and block kinematics of Tibetan Plateau from GPS measurements[J]. Geophysical Journal International, 2017, 208(2): 1088-1102. [5] GUO Peng, HAN Zhujun, MAO Zebin, et al. Paleo earthquakes and rupture behavior of the Lenglongling fault: implications for seismic hazards of the northeastern margin of the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(2): 1520-1543. [6] KIRBY E, HARKINS N, WANG Erqi, et al. Slip rate gradients along the eastern Kunlun fault[J]. Tectonics, 2007, 26(2): TC2010. [7] HE Jiankun, CHÉRY J. Slip rates of the Altyn Tagh, Kunlun and Karakorum faults (Tibet) from 3D mechanical modeling[J]. Earth and Planetary Science Letters, 2008, 274(1/2): 50-58. [8] 简慧子, 王丽凤, 任治坤, 等. 基于GPS速度场研究鄂拉山断裂现今滑动速率和闭锁状态[J]. 地球物理学报, 2020, 63(3): 1127-1142. JIAN Huizi, WANG Lifeng, REN Zhikun, et al. Present-day slip rate and interseismic fault coupling along the Elashan fault using GPS[J]. Chinese Journal of Geophysics, 2020, 63(3): 1127-1142. [9] 刘洋, 许才军, 温扬茂, 等. 2008年大柴旦Mw 6.3级地震的InSAR同震形变观测及断层参数反演[J]. 测绘学报, 2015, 44(11): 1202-1209. LIU Yang, XU Caijun, WEN Yangmao, et al. The InSAR coseismic deformation observation and fault parameter inversion of the 2008 Dachaidan Mw 6.3 earthquake[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(11): 1202-1209. [10] 董金元, 李传友, 郑文俊, 等. 柴达木盆地北缘石底泉背斜构造地貌特征及地质意义[J]. 地震地质, 2021, 43(3): 521-539. DONG Jinyuan, LI Chuanyou, ZHENG Wenjun, et al. Tectonic geomorphic features and geological significance of the Shidiquan anticline in the northern margin of the Qaidam Basin[J]. Seismology and Geology, 2021, 43(3): 521-539. [11] 李宏义, 姜振学, 庞雄奇, 等. 柴北缘油气运移优势通道特征及其控油气作用[J]. 地球科学, 2006, 31(2): 214-220. LI Hongyi, JIANG Zhenxue, PANG Xiongqi, et al. Dominant migration pathway and its control on oil-gas migration in the northern edge of Qaidam Basin[J]. Earth Science, 2006, 31(2): 214-220. [12] 姚生海, 盖海龙, 刘炜, 等. 柴达木盆地北缘断裂(阿木尼克山段)构造地貌及晚第四纪活动速率研究[J]. 第四纪研究, 2020, 40(5): 1312-1322. YAO Shenghai, GAI Hailong, LIU Wei, et al. Tectonic geomorphology and late quaternary slip rate of the amunike segment, the north Qaidam thrust fault zone[J]. Quaternary Sciences, 2020, 40(5): 1312-1322. [13] 姚生海, 盖海龙, 殷翔, 等. 柴达木盆地北缘断裂(锡铁山段)的构造地貌特征与晚第四纪活动速率[J]. 地震地质, 2020, 42(6): 1385-1400. YAO Shenghai, GAI Hailong, YIN Xiang, et al. Tectonic geomorphology and quaternary slip rate of the Xitieshan section of the northern margin fault of Qaidam Basin[J]. Seismology and Geology, 2020, 42(6): 1385-1400. [14] DAOUT S, PARSONS B, WALKER R. Post-earthquake fold growth imaged in the Qaidam Basin, China, with interferometric synthetic aperture radar[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(3): e2020JB021241. [15] 袁道阳. 青藏高原东北缘晚新生代以来的构造变形特征与时空演化[D]. 北京: 中国地震局地质研究所, 2003. YUAN Daoyang. Tectonic deformation features and space-time evolution in northeastern margin of the Qinghai-Tibetan plateau since the late cenozoic time[D]. Beijing: Institute of Geology, China Earthquake Administration, 2003. [16] YUAN D Y, CHAMPAGNAC J D, GE W P, et al. Late quaternary right-lateral slip rates of faults adjacent to the Lake Qinghai, northeastern margin of the Tibetan Plateau[J]. Geological Society of America Bulletin, 2011, 123(9/10): 2016-2030. [17] LI Yuhang, LIU Mian, WANG Qingliang, et al. Present-day crustal deformation and strain transfer in northeastern Tibetan Plateau[J]. Earth and Planetary Science Letters, 2018, 487: 179-189. [18] 曾洵. 柴达木盆地北缘托素湖-牦牛山断裂活动特征[D]. 北京: 中国地震局地质研究所, 2019. ZENG Xun. Active characteristics of Tuosuhu-Maoniushan fault, northern margin of Qaidam Basin[D]. Beijing:Institute of Geology, China Earthquake Administration, 2019. [19] MORENO M, HABERLAND C, ONCKEN O, et al. Locking of the Chile subduction zone controlled by fluid pressure before the 2010 earthquake[J]. Nature Geoscience, 2014, 7(4): 292-296. [20] JIANG Guoyan, XU Xiwei, CHEN Guihua, et al. Geodetic imaging of potential seismogenic asperities on the Xianshuihe-Anninghe-Zemuhe fault system, southwest China, with a new 3D viscoelastic interseismic coupling model[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(3): 1855-1873. [21] 李彦川, 单新建, 宋小刚, 等. GPS揭示的郯庐断裂带中南段闭锁及滑动亏损[J]. 地球物理学报, 2016, 59(11): 4022-4034. LI Yanchuan, SHAN Xinjian, SONG Xiaogang, et al. Fault locking and slip rate deficit on the middle and southern segment of the Tancheng-Lujiang fault inverted from GPS data[J]. Chinese Journal of Geophysics, 2016, 59(11): 4022-4034. [22] BEDFORD J, MORENO M, LI Shaoyang, et al. Separating rapid relocking, after slip, and viscoelastic relaxation: an application of the postseismic straightening method to the Maule 2010 cGPS[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(10): 7618-7638. [23] LI L, LI Y, ZHANG F, et al. Fault blocking characteristics and seismic hazard analysis in the middle and southern segments of the Tanlu fault zone[J]. Acta Geologica Sinica, 2020, 94(2): 467-479. [24] LI Layue, WU Yanqiang, LI Yujiang, et al. Dynamic deformation and fault locking of the Xianshuihe fault zone, southeastern Tibetan Plateau: implications for seismic hazards[J]. Earth, Planets and Space, 2022, 74(1): 1-16. [25] LI Z. Locating the small 1999 Frenchman Flat, Nevada earthquake with InSAR stacking[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 39. [26] LI Z, YU C, XIAO R, et al. Entering a new era of InSAR: advanced techniques and emerging applications[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 1-4. [27] 党亚民, 杨强, 王伟, 等. 基于块体模型的青藏高原及邻区地壳三维构造形变分析[J]. 测绘学报, 2022, 51(7): 1192-1205. DOI: 10.11947/j.AGCS.2022.20220123. DANG Yamin, YANG Qiang, WANG Wei, et al. Analysis on 3D crustal deformation of Qinghai-Tibet Plateau and its surrounding areas based on block model[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1192-1205. DOI: 10.11947/j.AGCS.2022.20220123. [28] 赵静, 占伟, 任金卫, 等. 汶川地震后龙门山断层中段愈合过程的GPS时间序列反演[J]. 测绘学报, 2021, 50(1): 37-51. DOI: 10.11947/j.AGCS.2021.20200047. ZHAO Jing, ZHAN Wei, REN Jinwei, et al. GPS time series inversion of the healing process of the middle segment of the Longmenshan fault after the 2008 Wenchuan earthquake[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(1): 37-51. DOI: 10.11947/j.AGCS.2021.20200047. [29] 周德敏. 青藏高原东北缘现今地壳形变的GPS观测研究[D]. 北京: 中国地震局地质研究所, 2005. ZHOU Demin. A study on crustal deformation based on GPS data in the northeastern margin of the qinghai-tibetan plateau[D]. Beijing:Institute of Geology, China Earthquake Administration, 2005. [30] LOVELESS J P, MEADE B J. Partitioning of localized and diffuse deformation in the Tibetan Plateau from joint inversions of geologic and geodetic observations[J]. Earth and Planetary Science Letters, 2011, 303(1/2): 11-24. [31] 李煜航, 崔笃信, 郝明. 利用GPS数据反演青藏高原东北缘主要活动断裂滑动速率[J]. 地球科学, 2015, 40(10): 1767-1780. LI Yuhang, CUI Duxin, HAO Ming. GPS-constrained inversion of slip rate on major active faults in the northeastern margin of Tibet Plateau[J]. Earth Science, 2015, 40(10): 1767-1780. [32] 徐化超, 王辉, 曹建玲. 青藏高原东北缘主要断裂滑动速率及其动力学意义[J]. 地震, 2018, 38(3): 13-23. XU Huachao, WANG Hui, CAO Jianling. Slip rates of the major faults in the northeastern Tibetan Plateau and their geodynamic implications[J]. Earthquake, 2018, 38(3): 13-23. [33] WANG Min, SHEN Zhengkang. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2): e2019JB018774. [34] ZHENG Gang, WANG Hua, WRIGHT T J, et al. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(11): 9290-9312. [35] YU Jiansheng, TAN Kai, ZHANG Caihong, et al. Present-day crustal movement of the Chinese mainland based on global navigation satellite system data from 1998 to 2018[J]. Advances in Space Research, 2019, 63(2): 840-856. [36] SAVAGE J C, BURFORD R O. Geodetic determination of relative plate motion in central California[J]. Journal of Geophysical Research, 1973, 78(5): 832-845. [37] SHEN Zhengkang, LÜ Jiangning, WANG Min, et al. Contemporary crustal deformation around the southeast border- land of the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B11): B11409. [38] 赵志逸, 李玉龙, 杨鸿鹏, 等. 青海省宗务隆山地区土壤地球化学在找矿中的应用: 以德令哈市红柳沟金矿为例[J]. 矿产与地质, 2018, 32(4): 742-747. ZHAO Zhiyi, LI Yulong, YANG Hongpeng, et al. Application of soil geochemistry in prospecting in Zongwulongshan area, Qinghai province: a case study in the Hongliugou gold deposit in Delingha[J]. Mineral Resources and Geology, 2018, 32(4): 742-747. [39] 刘炜. 鄂拉山断裂北段构造地貌特征研究[J]. 河南科技, 2019(1): 143-145. LIU Wei. Study on thetectonic and geomorphic characteristics of the northern segment of the Ela mountain fault[J]. Henan Science and Technology, 2019(1): 143-145. [40] MCCAFFREY R. Crustal block rotations and plate coupling[M]//Plate Boundary Zones. Washington: American Geophysical Union, 2013: 101-122. [41] MCCAFFREY R, QAMAR A I, KING R W, et al. Fault locking, block rotation and crustal deformation in the Pacific Northwest[J]. Geophysical Journal International, 2007, 169(3): 1315-1340. [42] 赵静. 基于GPS资料研究汶川与芦山地震变形过程[D]. 北京: 中国地震局地质研究所, 2021. ZHAO Jing. Study on the deformation process of the Wenchuan and Lushan earthquakes based on GPS data[D]. Beijing:Institute of Geology, China Earthquake Administrator, 2021. [43] MCCAFFREY R. Block kinematics of the Pacific-North America plate boundary in the southwestern United States from inversion of GPS, seismological, and geologic data[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B7): B07401. [44] 肖卓辉, 许才军, 江国焰, 等. 汶川地震前十年间龙门山区域顾及断层闭锁的地壳应变场[J]. 地球物理学报, 2017, 60(3): 953-961. XIAO Zhuohui, XU Caijun, JIANG Guoyan, et al. Crustal strain in the Longmenshan region considering fault locking during ten years before the 2008 Wenchuan earthquake[J]. Chinese Journal of Geophysics, 2017, 60(3): 953-961. [45] 葛伟鹏, 王敏, 沈正康, 等. 柴达木-祁连山地块内部震间上地壳块体运动特征与变形模式研究[J]. 地球物理学报, 2013, 56(9): 2994-3010. GE Weipeng, WANG Min, SHEN Zhengkang, et al. Intersiesmic kinematics and defromation patterns on the upper crust of Qaidam-Qilianshan block[J]. Chinese Journal of Geophysics, 2013, 56(9): 2994-3010. [46] LI Yanchuan, SHAN Xinjian, QU Chunyan, et al. Crustal deformation of the Altyn tagh fault based on GPS[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(11): 10309-10322. [47] 王君毅, 许才军, 温扬茂, 等. 基于GPS观测的红河断裂带现今分段及闭锁特征[J]. 地球物理学报, 2022, 65(4): 1240-1254. WANG Junyi, XU Caijun, WEN Yangmao, et al. Characteristics of segmentation and interseismic coupling along the Red River fault from GPS observations[J]. Chinese Journal of Geophysics, 2022, 65(4): 1240-1254. [48] SHEN Zhengkang, WANG Min, ZENG Yuehua, et al. Optimal interpolation of spatially discretized geodetic data[J]. Bulletin of the Seismological Society of America, 2015, 105(4): 2117-2127. [49] 张国民, 李丽, 马宏生, 等. 中国大陆地震震源深度及其构造含义[J]. 科学通报, 2002, 47(9): 663-668, 721. ZHANG Guomin, LI Li, MA Hongsheng, et al. Focal depth research of earthquakes in mainland China: implication for tectonics [J]. Chinese Science Bulletin, 2002, 47(9): 663-668, 721. [50] YANG Z X, WALDHAUSER F, CHEN Y T, et al. Double-difference relocation of earthquakes in central-western China, 1992-1999[J]. Journal of Seismology, 2005, 9(2): 241-264. [51] ZHANG Peizhen, SHEN Zhengkang, WANG Min, et al. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 2004, 32(9): 809-812. [52] CHENG Feng, ZUZA A V, HAPROFF P J, et al. Accommodation of India-Asia convergence via strike-slip faulting and block rotation in the Qilian Shan fold-thrust belt, northern margin of the Tibetan Plateau[J]. Journal of the Geological Society, 2021, 178(3): jgs2020-207. [53] ZHANG Peizhen. Beware of slowly slipping faults[J]. Nature Geoscience, 2013, 6(5): 323-324. [54] 邓起东, 程绍平, 马冀, 等. 青藏高原地震活动特征及当前地震活动形势[J]. 地球物理学报, 2014, 57(7): 2025-2042. DENG Qidong, CHENG Shaoping, MA Ji, et al. Seismic activities and earthquake potential in the Tibetan Plateau[J]. Chinese Journal of Geophysics, 2014, 57(7): 2025-2042. [55] 易桂喜, 闻学泽, 辛华, 等. 2008年汶川Ms 8.0地震前龙门山—岷山构造带的地震活动性参数与地震视应力分布[J]. 地球物理学报, 2011, 54(6): 1490-1500. YI Guixi, WEN Xueze, XIN Hua, et al. Distributions of seismicity parameters and seismic apparent stresses on the Longmenshan-Minshan tectonic zone before the 2008Ms 8.0 Wenchuan earthquake[J]. Chinese Journal of Geophysics, 2011, 54(6): 1490-1500. [56] 徐锡伟, 吴熙彦, 于贵华, 等. 中国大陆高震级地震危险区判定的地震地质学标志及其应用[J]. 地震地质, 2017, 39(2): 219-275. XU Xiwei, WU Xiyan, YU Guihua, et al. Seismo-geological signatures for identifying M≥7.0 earthquake risk areas and their premilimary application in mainland China[J]. Seismology and Geology, 2017, 39(2): 219-275. [57] ADER T, AVOUAC J P, JING Liuzeng, et al. Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: implications for seismic hazard[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B4): B04403. [58] 李腊月, 李玉江, 张风霜, 等. 郯庐断裂带中南段闭锁特征与地震危险性分析[J]. 地质学报, 2020, 94(2): 467-479. LI Layue, LI Yujiang, ZHANG Fengshuang, et al. Fault blocking characteristics and seismic hazard analysis in the middle and southern segments of the Tanlufault zone[J]. Acta Geologica Sinica, 2020, 94(2): 467-479. |