测绘学报 ›› 2023, Vol. 52 ›› Issue (11): 1805-1834.doi: 10.11947/j.AGCS.2023.20230003
• 综述 • 下一篇
李振洪1,2,3,4, 朱武1,2,3,4, 余琛1,2,3,4, 张勤1,2,3,4, 杨元喜5,6
收稿日期:
2023-01-03
修回日期:
2023-10-18
发布日期:
2023-12-15
作者简介:
李振洪(1975-),男,博士,教授,主要研究方向包括影像大地测量及其在地质灾害(如地震、滑坡和地面沉降)和生态环境方面的应用。E-mail:Zhenhong.Li@chd.edu.cn
基金资助:
LI Zhenhong1,2,3,4, ZHU Wu1,2,3,4, YU Chen1,2,3,4, ZHANG Qin1,2,3,4, YANG Yuanxi5,6
Received:
2023-01-03
Revised:
2023-10-18
Published:
2023-12-15
Supported by:
摘要: 随着遥感卫星系统的逐渐增多,影像为研究地球形状和大小等大地测量参数提供了更高精度、更高分辨率的数据支持,推动了大地测量学科的发展,也衍生出影像大地测量学(Imaging Geodesy)。影像大地测量学是大地测量、遥感科学、数字摄影测量、计算机视觉等学科的交叉融合,在减灾防灾、环境保护和新能源开发利用等领域发挥了重要作用。本文梳理了其发展历程、定义内涵、关键技术、研究内容和发展趋势5方面的内容。基于遥感卫星系统和影像处理技术的发展历程,本文将影像大地测量学的发展划分为起步萌芽、初期飞跃、深度创新和全面应用4个阶段。顾及研究对象空间位置的不同,影像大地测量学的主要研究内容包括地球大气环境观测与反演、地球表面环境监测与演化以及地球内部物理结构与动力学反演。引入数字高程模型反演、大气水汽监测、活动滑坡探测与监测、地震周期研究以及土壤湿度监测等应用案例,分析了影像大地测量学的现代应用。最后,提出多源海量影像的融合和近实时化处理是目前影像大地测量学面临的主要挑战。本文研究将有助于大地测量学者对影像大地测量学内涵的了解和认识,进而更好地应用于教学和科研工作中,以及服务国家重大战略和工程建设。
中图分类号:
李振洪, 朱武, 余琛, 张勤, 杨元喜. 影像大地测量学发展现状与趋势[J]. 测绘学报, 2023, 52(11): 1805-1834.
LI Zhenhong, ZHU Wu, YU Chen, ZHANG Qin, YANG Yuanxi. Development status and trends of Imaging Geodesy[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(11): 1805-1834.
[1] KAULA W M. Theory of satellite geodesy[M].Paris:Blaisdell Publishing Company, Waltham Massachusetts, USA, 1966. [2] SCHILLAK S, MARIUSZ F, KRYNSKI J, et al. Satellite geodesy[R].Paris:Committee on Space Research, 2010. [3] 宁津生. 测绘学概论[M]. 2版. 武汉:武汉大学出版社, 2008. NING Jinsheng. Introduction to geomatics[M]. 2nd ed. Wuhan:Wuhan University Press, 2008. [4] CRIPPEN R, BLOM R. Imageodesy applied to the landers earthquake:an update and a comparison to radar interferometry[J].Environmental Science, Mathematics,1993,1:20060039400. [5] GOV J N. Imageodesy:a tool for mapping subpixel terrain displacements in satellite imagery[J]. International Union of Geodesy & Geophysics Geophysics & the Environmentboulder Colorado, 1995(23):20060037146. [6] 王之卓.当代测绘学科的发展[J].测绘学报, 1998, 27(4):283-286. WANG Zhizhuo. Development of contemporary surveying and mapping[J]. Acta Geodaetica et Cartographica Sinica, 1998, 27(4):283-286. [7] 廖明生,林珲.雷达干涉测量:原理与信号处理基础[M].北京:测绘出版社, 2003. LIAO Mingsheng, LIN Hui. Synthetic aperture radar interferometry:principle and signal processing[M].Beijing:Serveying & Mapping Press, 2003. [8] EINEDER M, MINET C, STEIGENBERGER P, et al. Imaging geodesy-toward centimeter-level ranging accuracy with TerraSAR-X[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(2):661-671. [9] CARTER W E, GLENNIE C L, SHRESTHA R L. Geodetic imaging by airborne LiDAR:a golden age in geodesy-a Bonanza for related sciences[M].Berlin:Springer, 2015:399-405. [10] 张勤, 黄观文, 杨成生. 地质灾害监测预警中的精密空间对地观测技术[J]. 测绘学报, 2017, 46(10):1300-1307.DOI:10.11947/j.AGCS.2017.20170453. ZHANG Qin, HUANG Guanwen, YANG Chengsheng. Precision space observation technique for geological hazard monitoring and early warning[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1300-1307.DOI:10.11947/j.AGCS.2017.20170453. [11] ROGERS A E, INGALLS R P. Venus:mapping the surface reflectivity by radar interferometry[J]. Science, 1969, 165(3895):797-799. [12] GRAHAM L C. Synthetic interferometer radar for topographic mapping[J]. Proceedings of the IEEE, 1974, 62(6):763-768. [13] GABRIEL A K, GOLDSTEIN R M, ZEBKER H A. Mapping small elevation changes over large areas:differential radar interferometry[J]. Journal of Geophysical Research:Solid Earth, 1989, 94(B7):9183-9191. [14] JENSEN J R. Remote sensing of the environment:an earth resource perspective[M]. Pearson:Pearson Education India, 2009. [15] HAACK B N. Landsat:a tool for development[J]. World Development, 1982, 10(10):899-909. [16] IPPEN R E. Measurement of subresolution terrain displacements using SPOT panchromatic imagery[J]. Episodes Journal of International Geoscience, 1992, 15(1):56-61. [17] MASSONNET D, ROSSI M, CARMONA C, et al. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 1993, 364(6433):138-142. [18] GOLDSTEIN R M, ENGELHARDT H, KAMB B, et al. Satellite radar interferometry for monitoring ice sheet motion:application to an Antarctic ice stream[J]. Science, 1993, 262(5139):1525-1530. [19] ANSSEN R F, WECKWERTH T M, ZEBKER H A, et al. High resolution water vapor mapping from interferometric radar measurements[J]. Science, 1999, 283:1297-1299. [20] FARR T G, ROSEN P A, CARO E, et al. The shuttle radar topography mission[J]. Reviews of Geophysics, 2007, 45(2):1-33. [21] SANDWELL D T, PRICE E J. Phase gradient approach to stacking interferograms[J]. Journal of Geophysical Research:Solid Earth, 1998, 103(B12):30183-30204. [22] WRIGHT T, PARSONS B, FIELDING E. Measurement of interseismic strain accumulation across the North Anatolian Fault by satellite radar interferometry[J]. Geophysical Research Letters, 2001, 28(10):2117-2120. [23] FERRETTI A, PRATI C, ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1):8-20. [24] BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383. [25] WENG Q. Remote sensing of impervious surfaces in the urban areas:requirements, methods, and trends[J]. Remote Sensing of Environment, 2012, 117:34-49. [26] LU D, WENG Q. A survey of image classification methods and techniques for improving classification performance[J]. International Journal of Remote Sensing, 2007, 28(5):823-870. [27] MICHAEL S. Renslow, Manual of AIRBORNE TOPOGRAPHIC LIDAR[R].[S.l.]:American Society for Photogrammetry and Remote Sensing, 2012:1-100. [28] 姜高珍, 韩冰, 高应波, 等. Landsat系列卫星对地观测40年回顾及LDCM前瞻[J]. 遥感学报, 2013, 17(5):1033-1048. JIANG Gaozhen, HAN Bing, GAO Yingbo, et al. Review of 40-year earth observation with Landsat series and prospects of LDCM[J]. Journal of Remote Sensing, 2013, 17(5):1033-1048. [29] 王建荣, 杨元喜, 胡燕, 等. 光学测绘卫星现状与发展趋势分析[J]. 武汉大学学报(信息科学版), 2023, 48(3):333-338. WANG Jianrong, YANG Yuanxi, HU Yan, et al. Analysis on status quo and development trend of optical surveying and mapping satellites[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3):333-338. [30] 白照广. 高分一号卫星的技术特点[J]. 中国航天, 2013(8):5-9. BAI Zhaoguang. Technical characteristics of Gaofen-1 satellite[J]. Aerospace China, 2013(8):5-9. [31] FORNARO G, SERAFINO F, SOLDOVIERI F. Three-dimensional focusing with multipass SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(3):507-517. [32] BECHOR N B D, ZEBKER H A. Measuring two-dimensional movements using a single InSAR pair[J]. Geophysical Research Letters, 2006, 33(16):16311-1. [33] HOOPER A, SEGALL P, ZEBKER H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos[J]. Journal of Geophysical Research:Solid Earth, 2007, 112(B7):B07407. [34] FERRETTI A, FUMAGALLI A, NOVALI F, et al. A new algorithm for processing interferometric data-stacks:SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3460-3470. [35] LI Zhenhong, FIELDING E J, CROSS P, et al. Interferometric synthetic aperture radar atmospheric correction:GPS topography-dependent turbulence model[J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B2):B02404. [36] ONN F, ZEBKER H A. Correction for interferometric synthetic aperture radar atmospheric phase artifacts using time series of zenith wet delay observations from a GPS network[J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B9):B09102. [37] LI Zhenong, MULLER J P, CROSS P, et al. Interferometric synthetic aperture radar (InSAR) atmospheric correction:GPS, moderate resolution imaging spectroradiometer (MODIS), and InSAR integration[J]. Journal of Geophysical Research:Solid Earth, 2005, 110(B3):B03410. [38] LI Zhenhong, FIELDING E J, CROSS P, et al. Advanced InSAR atmospheric correction:MERIS/MODIS combination and stacked water vapour models[J]. International Journal of Remote Sensing, 2009, 30(13):3343-3363. [39] NOF R N, BAER G, ZIV A, et al. Sinkhole precursors along the Dead Sea, Israel, revealed by SAR interferometry[J]. Geology, 2013, 41(9):1019-1022. [40] HONG S H, WDOWINSKI S, KIM S W, et al. Multi-temporal monitoring of wetland water levels in the Florida Everglades using interferometric synthetic aperture radar (InSAR)[J]. Remote Sensing of Environment, 2010, 114(11):2436-2447. [41] 方芳.机载 LIDAR 技术现状及发展方向[C]//全国测绘科技信息交流会暨测绘博客征文颁奖论文集.哈尔滨:[s.n.],2009. FANG Fang. Current Status and Development Direction of Airborne LIDAR Technology[C]//Proceedings of 2009 National Surveying and Mapping Technology Information Exchange Conference and Surveying and Mapping Blog Essay Award.Harbin:[s.n.],2009. [42] WESTOBY M J, BRASINGTON J, GLASSER N F, et al. 'Structure-from-Motion' photogrammetry:a low-cost, effective tool for geoscience applications[J]. Geomorphology, 2012, 179:300-314. [43] PHIRI D, SIMWANDA M, SALEKIN S, et al. Sentinel-2 data for land cover/use mapping:a review[J]. Remote Sensing, 2020, 12(14):2291. [44] XU Y, YU L, FENG D, et al. Comparisons of three recent moderate resolution African land cover datasets:CGLS-LC100, ESA-S2-LC20, and FROM-GLC-Africa30[J]. International Journal of Remote Sensing, 2019, 40(16):6185-6202. [45] GROMNY E, LEWIN'SKI S, RYBICKI M, et al. Creation of training dataset for Sentinel-2 land cover classification[C]//Proceedings of 2019 Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments.[S.l.]:SPIE,2019:998-1006. [46] 李新武,郭华东,彭星,等. SAR对地观测技术及应用新进展[J].南京信息工程大学学报(自然科学版), 2020, 12(2):170-180. LI Xinwu, GUO Huadong, PENG Xing, et al. New advances of SAR and its application in earth observation[J]. Journal of Nanjing University of Information Science and Technology (Natural Science Edition), 2020, 12(2):170-180. [47] 孙伟伟, 杨刚, 陈超, 等. 中国地球观测遥感卫星发展现状及文献分析[J]. 遥感学报, 2020, 24(5):479-510. SUN Weiwei, YANG Gang, CHEN Chao, et al. Development status and literature analysis of China's earth observation remote sensing satellites[J]. Journal of Remote Sensing, 2020, 24(5):479-510. [48] 杨元喜, 王建荣, 楼良盛, 等. 航天测绘发展现状与展望[J]. 中国空间科学技术, 2022, 42(3):1-9. YANG Yuanxi, WANG Jianrong, LOU Liangsheng, et al. Development status and prospect of satellite-based surveying[J]. Chinese Space Science and Technology, 2022, 42(3):1-9. [49] YU Chen, PENNA N T, LI Zhenhong. Generation of real-time mode high-resolution water vapor fields from GPS observations[J]. Journal of Geophysical Research:Atmospheres, 2017, 122(3):2008-2025. [50] YU Chen, LI Zhenhong, PENNA N T, et al. Generic atmospheric correction model for interferometric synthetic aperture radar observations[J]. Journal of Geophysical Research:Solid Earth, 2018, 123(10):9202-9222. [51] YU Chen, LI Zhenhong, PENNA N T. Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model[J]. Remote Sensing of Environment, 2018, 204:109-121. [52] LAZECKY' M, SPAANS K, GONZÁLEZ P J, et al. LiCSAR:an automatic InSAR tool for measuring and monitoring tectonic and volcanic activity[J]. Remote Sensing, 2020, 12(15):2430. [53] HOGENSON K, ARKO S A, BVCHLER B, et al. Hybrid pluggable processing pipeline (HyP3):a cloud-based infrastructure for generic processing of SAR data[J].AGU Fall Meeting Abstracts. 2016, 1:IN21B-1740. [54] 何佳男. 贴近摄影测量及其关键技术研究[D]. 武汉:武汉大学,2019. HE Jianan. Research on close photogrammetry and its key technologies[D]. Wuhan:Wuhan University,2019. [55] AHMED R, MAHMUD K H, TUYA J H. A GIS-based mathematical approach for generating 3D terrain model from high-resolution UAV imageries[J].Journal of Geovisualization and Spatial Analysis, 2021, 5(2):1-10. [56] LIU X, JI Z, ZHOU H, et al. An object-oriented UAV 3D path planning method applied in cultural heritage documentation[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2022,1:33-40. [57] 李治郡, 钟琳婷, 黄炎和, 等. 基于贴近摄影测量的崩岗侵蚀监测技术[J]. 农业工程学报, 2021, 37(8):151-159. LI Zhijun, ZHONG Linting, HUANG Yanhe, et al. Monitoring technology for collapse erosion based on the nap of the object photograph of UAV[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(8):151-159. [58] 刘洋,李秀丽,张凯想,等.基于无人机贴近摄影测量的桥梁精细化建模[J].公路, 2021, 66(12):106-109. LIU Yang, LI Xiuli, ZHANG Kaixiang, et al. Refined modeling of bridge based on UAV close to photogrammetry[J]. Highway, 2021, 66(12):106-109. [59] ZHANG Chenglong, LI Zhenhong, YU Chen, et al. An integrated framework for wide-area active landslide detection with InSAR observations and SAR pixel offsets[J].Landslides, 2022, 19(12):2905-2923. [60] YU Chen, LI Zhenhong, PENNA N T. Triggered afterslip on the southern Hikurangi subduction interface following the 2016 Kaikōura earthquake from InSAR time series with atmospheric corrections[J]. Remote Sensing of Environment, 2020, 251:112097. [61] LIU Jihong, HU Jun, LI Zhiwei, et al. Dynamic estimation of multi-dimensional deformation time series from InSAR based on Kalman filter and strain model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5216816. [62] 柳钦火, 吴俊君, 李丽, 等. "一带一路"区域可持续发展生态环境遥感监测[J]. 遥感学报, 2018, 22(4):686-708. LIU Qinhuo, WU Junjun, LI Li, et al. Ecological environment monitoring for sustainable development goals in the Belt and Road region[J]. Journal of Remote Sensing, 2018, 22(4):686-708. [63] 李振洪, 朱武, 余琛, 等. 雷达影像地表形变干涉测量的机遇、挑战与展望[J]. 测绘学报,2022,51(7):1485-1519. DOI:10.11947/j.AGCS.2022.20220224. LI Zhenhong, ZHU Wu, YU Chen, et al. Interferometric synthetic aperture radar for deformation mapping:opportunities, challenges and the outlook[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7):1485-1519. DOI:10.11947/j.AGCS.2022.20220224. [64] HOOPER A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches[J]. Geophysical Research Letters, 2008, 35(16):L16302. [65] WANG Chao, PAVELSKY T M, YAO Fangfang, et al. Flood extent mapping during hurricane Florence with repeat-pass L-Band UAVSAR images[J]. Water Resources Research, 2022, 58(3):e2021WR030606. [66] NOFERINI L, PIERACCINI M, MECATTI D, et al. Using GB-SAR technique to monitor slow moving landslide[J]. Engineering Geology, 2007, 95(3/4):88-98. [67] ZHANG Bochen, DING Xiaoli, WERNER C, et al. Dynamic displacement monitoring of long-span bridges with a microwave radar interferometer[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 138:252-264. [68] 徐甫,王政,李振洪,等.复杂环境下的地基雷达大气改正方法[J/OL].武汉大学学报(信息科学版):1-15[2023-07-17]. https://www.cnki.com.cn/Article/CJFDTotal-WHCH20221019000.htm. XU Fu, WANG Zheng, LI Zhenhong, et al. An atmospheric correction method for ground-based radar under complex environment[J/OL]. Geomatics and Information Science of Wuhan University:1-15[2023-07-17]. https://www.cnki.com.cn/Article/CJFDTotal-WHCH20221019 000.htm. [69] SAUCHYN D J, TRENCH N. Landsat applied to landslide mapping[J]. Photogrammetric Engineering and Remote Sensing, 1978, 44(6):735-741. [70] GUZZETTI F, MONDINI A C, CARDINALI M, et al. Landslide inventory maps:new tools for an old problem[J]. Earth-Science Reviews, 2012, 112(1/2):42-66. [71] HUANG Qingqing, WANG Chengyi, MENG Yu, et al. Landslide monitoring using change detection in multitemporal optical imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(2):312-316. [72] WANG Wei, ZHAO Wenbo, CHAI Bo, et al. Discontinuity interpretation and identification of potential rockfalls for high-steep slopes based on UAV nap-of-the-object photogrammetry[J]. Computers & Geosciences, 2022, 166:105191. [73] LEIBE B, CORNELIS N, CORNELIS K, et al. Dynamic 3D scene analysis from a moving vehicle[C]//Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis:IEEE, 2007:1-8. [74] 朱庆, 张利国, 丁雨淋, 等. 从实景三维建模到数字孪生建模[J]. 测绘学报,2022,51(6):1040-1049. DOI:10.11947/j.AGCS.2022.20210640. ZHU Qing, ZHANG Liguo, DING Yulin, et al. From real 3D modeling to digital twin modeling[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6):1040-1049. DOI:10.11947/j.AGCS.2022.20210640. [75] JABOYEDOFF M, OPPIKOFER T, ABELLÁN A, et al. Use of LiDAR in landslide investigations:a review[J].Natural Hazards, 2012, 61(1):5-28. [76] WALLACE L, LUCIEER A, WATSON C, et al. Development of a UAV-LiDAR system with application to forest inventory[J]. Remote Sensing, 2012, 4(6):1519-1543. [77] 董秀军. 三维激光扫描技术及其工程应用研究[D]. 成都:成都理工大学,2007. DONG Xiujun. Research on 3D laser scanning technology and its engineering application[D]. Chengdu:Chengdu University of Technology,2007. [78] ZHANG Bochen, ZHU Wu, DING Xiaoli, et al. A review of methods for mitigating ionospheric artifacts in differential SAR interferometry[J]. Geodesy and Geodynamics, 2022, 13(2):160-169. [79] ROCKEN C, ANTHES R, EXNER M, et al. Analysis and validation of GPS/MET data in the neutral atmosphere[J]. Journal of Geophysical Research:Atmospheres, 1997, 102(D25):29849-29866. [80] 张克非, 李浩博, 王晓明, 等. 地基GNSS大气水汽探测遥感研究进展和展望[J]. 测绘学报,2022,51(7):1172-1191. DOI:10.11947/j.AGCS.2022.20220149. ZHANG Kefei, LI Haobo, WANG Xiaoming, et al. Recent progresses and future prospectives of ground-based GNSS water vapor sounding[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7):1172-1191. DOI:10.11947/j.AGCS.2022.20220149. [81] 宁津生, 王正涛, 超能芳. 国际新一代卫星重力探测计划研究现状与进展[J]. 武汉大学学报(信息科学版), 2016, 41(1):1-8. NING Jinsheng, WANG Zhengtao, CHAO Nengfang. Research status and progress in international next-generation satellite gravity measurement missions[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1):1-8. [82] 郭飞霄. 地表物质迁移的卫星大地测量反演理论与方法研究[D]. 郑州:信息工程大学,2019. GUO Feixiao. Study on inversion theory and method of satellite geodesy for surface material migration[D]. Zhengzhou:Information Engineering University,2019. [83] RODRIGUEZ E, MORRIS C S, BELZ J E.A global assessment of the SRTM performance[J]. Photogrammetric Engineering & Remote Sensing, 2006, 72(3):249-260. [84] HOSTACHE R, CHINI M, GIUSTARINI L, et al. Near-real-time assimilation of SAR-derived flood maps for improving flood forecasts[J]. Water Resources Research, 2018, 54(8):5516-5535. [85] DAI Lanxin, FAN Xuanmei, WANG Xin, et al. Coseismic landslides triggered by the 2022 Luding Ms 6.8 earthquake, China[J].Landslides, 2023, 20(6):1277-1292. [86] CAO Z, MELACK J M, LIU M, et al. Shifts, trends, and drivers of lake color across China since the 1980s[J]. Geophysical Research Letters, 2023, 50(8):e2023GL103225. [87] ELLIOTT J, WALTERS R, WRIGHT T. The role of space-based observation in understanding and responding to active tectonics and earthquakes[J]. Nature Communications, 2016, 7(1):13844. [88] SALVI S, STRAMONDO S, FUNNING G, et al. The Sentinel-1 mission for the improvement of the scientific understanding and the operational monitoring of the seismic cycle[J]. Remote Sensing of Environment, 2012, 120:164-174. [89] ANANTRASIRICHAI N, BIGGS J, ALBINO F, et al. Application of machine learning to classification of volcanic deformation in routinely generated InSAR data[J]. Journal of Geophysical Research:Solid Earth, 2018, 123(8):6592-6606. [90] COLESANTI C, WASOWSKI J.Investigating landslides with spaceborne synthetic aperture radar (SAR) interferometry[J]. Engineering Geology, 2006, 88(3-4):173-199. [91] COSTANTINI M, FERRETTI A, MINATI F, et al. Analysis of surface deformations over the whole Italian territory by interferometric processing of ERS, Envisat and COSMO-SkyMed radar data[J]. Remote Sensing of Environment, 2017, 202:250-275. [92] JOUGHIN I, SMITH B E, ABDALATI W. Glaciological advances made with interferometric synthetic aperture radar[J]. Journal of Glaciology, 2010, 56(200):1026-1042. [93] MA Peifeng, LIN Hui, WANG Weixi, et al. Toward fine surveillance:a review of multitemporal interferometric synthetic aperture radar for infrastructure health monitoring[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(1):207-230. [94] 滕吉文. 高精度地球物理学是创新未来的必然发展轨迹[J]. 地球物理学报, 2021, 64(4):1131-1144. TENG Jiwen. High-precision geophysics:the inevitable development track of the innovative future[J]. Chinese Journal of Geophysics, 2021, 64(4):1131-1144. [95] 高锐, 周卉, 卢占武, 等. 深地震反射剖面揭露青藏高原陆-陆碰撞与地壳生长的深部过程[J]. 地学前缘, 2022, 29(2):14-27. GAO Rui, ZHOU Hui, LU Zhanwu, et al. Deep seismic reflection profile reveals the deep process of continent-continent collision on the Tibetan Plateau[J]. Earth Science Frontiers, 2022, 29(2):14-27. [96] 孙和平, 孙文科, 申文斌, 等. 地球重力场及其地学应用研究进展:2020中国地球科学联合学术年会专题综述[J]. 地球科学进展, 2021, 36(5):445-460. SUN Heping, SUN Wenke, SHEN Wenbin, et al. Research progress of Earth's gravity field and its application in geosciences-a summary of annual meeting of Chinese geoscience union in 2020[J]. Advances in Earth Science, 2021, 36(5):445-460. [97] ELLIOTT J R. Earth observation for the assessment of earthquake hazard, risk and disaster management[J].Surveys in Geophysics, 2020, 41(6):1323-1354. [98] 陈立泽, 申旭辉, 王辉, 等. 我国高分辨率遥感技术在地震研究中的应用[J]. 地震学报, 2016, 38(3):333-344, 508. CHEN Lize, SHEN Xuhui, WANG Hui, et al. Application of high-resolution remote sensing technique to earthquake studies in China[J]. Acta Seismologica Sinica, 2016, 38(3):333-344, 508. [99] AMELUNG F, JÓNSSON S, ZEBKER H, et al. Widespread uplift and 'trapdoor' faulting on Galápagos volcanoes observed with radar interferometry[J]. Nature, 2000, 407(6807):993-996. [100] TAPLEY B D, BETTADPUR S, RIES J C, et al. GRACE measurements of mass variability in the Earth system[J]. Science, 2004, 305(5683):503-505. [101] ZOE Y H, XU X, HAASE J S, et al. Surface deformation surrounding the 2021 Mw 7.2 Haiti earthquake illuminated by InSAR observations[J]. Bulletin of the Seismological Society of America, 2023, 113(1):41-57. [102] FANG Jin, OU Qi, WRIGHT T J, et al. Earthquake cycle deformation associated with the 2021 Mw 7.4 Maduo (eastern Tibet) earthquake:an intrablock rupture event on a slow-slipping fault from Sentinel-1 InSAR and teleseismic data[J]. Journal of Geophysical Research:Solid Earth, 2022, 127(11):e2022JB024268. [103] 冯万鹏, 李振洪. InSAR资料约束下震源参数的PSO混合算法反演策略[J]. 地球物理学进展, 2010, 25(4):1189-1196. FENG Wanpeng, LI Zhenhong. A novel hybrid PSO/simplex algorithm for determining earthquake source parameters using InSAR data[J]. Progress in Geophysics, 2010, 25(4):1189-1196. [104] BAGNARDI M, HOOPER A. Inversion of surface deformation data for rapid estimates of source parameters and uncertainties:a Bayesian approach[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(7):2194-2211. [105] WANG Rongjiang, DIAO F, HOECHNER A. SDM-A geodetic inversion code incorporating with layered crust structure and curved fault geometry[J].EGU General Assembly Conference Abstracts. 2013,1:EGU2013-2411. [106] BARNHART W D, LOHMAN R B. Automated fault model discretization for inversions for coseismic slip distributions[J]. Journal of Geophysical Research:Solid Earth, 2010, 115(B10):B10419. [107] ELLIOTT A, ELLIOTT J, HOLLINGSWORTH J, et al. Satellite imaging of the 2015 M7.2 earthquake in the Central Pamir, Tajikistan, elucidates a sequence of shallow strike-slip ruptures of the Sarez-Karakul fault[J]. Geophysical Journal International, 2020, 221(3):1696-1718. [108] JIN Zeyu, FIALKO Y. Finite slip models of the 2019 Ridgecrest earthquake sequence constrained by space geodetic data and aftershock locations[J]. Bulletin of the Seismological Society of America, 2020, 110(4):1660-1679. [109] FIELDING E J, SLADEN A, LI Zhenhong, et al. Kinematic fault slip evolution source models of the 2008 M7.9 Wenchuan earthquake in China from SAR interferometry, GPS and teleseismic analysis and implications for Longmen Shan tectonics[J]. Geophysical Journal International, 2013, 194(2):1138-1166. [110] YU Chen, LI Zhenhong, SONG Chuang. Geodetic constraints on recent subduction earthquakes and future seismic hazards in the southwestern coast of Mexico[J]. Geophysical Research Letters, 2021, 48(13):e2021GL094192. [111] LIU Zhenjiang, YU Chen, LI Zhenhong, et al. Co-and post-seismic mechanisms of the 2020 Mw 6.3 Yutian earthquake and local stress evolution[J]. Earth and Space Science, 2023, 10(1):e2022EA002604. [112] TODA S, STEIN R S. Long- and short-term stress interaction of the 2019 Ridgecrest sequence and coulomb-based earthquake forecasts[J]. Bulletin of the Seismological Society of America, 2020, 110(4):1765-1780. [113] PELTZER G, ROSEN P, ROGEZ F, et al. Postseismic rebound in fault step-overs caused by pore fluid flow[J]. Science, 1996, 273(5279):1202-1204. [114] WEN Yangmao, LI Zhenhong, XU Caijun, et al. Postseismic motion after the 2001 Mw 7.8 Kokoxili earthquake in Tibet observed by InSAR time series[J]. Journal of Geophysical Research:Solid Earth, 2012, 117(B8):2011JB009043. [115] BIE Lidong, RYDER I, NIPPRESS S E J, et al. Coseismic and post-seismic activity associated with the 2008 Mw 6.3 Damxung earthquake, Tibet, constrained by InSAR[J]. Geophysical Journal International, 2014, 196(2):788-803. [116] BURGMANN R. Time-dependent distributed afterslip on and deep below the izmit earthquake rupture[J]. Bulletin of the Seismological Society of America, 2002, 92(1):126-137. [117] BVRGMANN R, DRESEN G. Rheology of the lower crust and upper mantle:evidence from rock mechanics, geodesy, and field observations[J]. Annual Review of Earth and Planetary Sciences, 2008, 36:531-567. [118] TÜYSÜZ O, BARKA A, YIĞITBAŞ E. Geology of the Saros graben and its implications for the evolution of the North Anatolian fault in the Ganos-Saros region, northwestern Turkey[J].Tectonophysics,1998, 293(1/2):105-126. [119] CAKIR Z, AKOGLU A M, BELABBES S, et al.Creeping along the Ismetpasa section of the North Anatolian fault (Western Turkey):rate and extent from InSAR[J]. Earth and Planetary Science Letters, 2005, 238(1/2):225-234. [120] HUSSAIN E, WRIGHT T J, WALTERS R J, et al. Constant strain accumulation rate between major earthquakes on the North Anatolian fault[J]. Nature Communications, 2018, 9:1392. [121] WEISS J R, WALTERS R J, MORISHITA Y, et al. High-resolution surface velocities and strain for Anatolia from Sentinel-1 InSAR and GNSS data[J]. Geophysical Research Letters, 2020, 47(17):e2020GL087376. [122] FIALKO Y. Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system[J]. Nature, 2006, 441(7096):968-971. [123] LOVELESS J P, MEADE B J. Stress modulation on the San Andreas fault by interseismic fault system interactions[J]. Geology, 2011, 39(11):1035-1038. [124] ELLIOTT J R, BIGGS J, PARSONS B, et al. InSAR slip rate determination on the Altyn Tagh fault, northern Tibet, in the presence of topographically correlated atmospheric delays[J]. Geophysical Research Letters, 2008, 35(12):2008GL033659. [125] ZHU Sen, XU Caijun, WEN Yangmao, et al. Interseismic deformation of the Altyn tagh fault determined by interferometric synthetic aperture radar (InSAR) measurements[J]. Remote Sensing, 2016, 8(3):233. [126] LIU Yunhua, ZHAO Dezheng, SHAN X. Asymmetric interseismic strain across the western Altyn Tagh fault from InSAR[J]. Remote Sensing, 2022, 14(9):2112. [127] LI Yanchuan, SHAN X, GAO Zhiyu, et al. Interseismic coupling, asperity distribution, and earthquake potential on major faults in southeastern Tibet[J]. Geophysical Research Letters, 2023, 50:e2022GL101209. [128] JIANG Guoyan, XU Xiwei, CHEN Guihua, et al. Geodetic imaging of potential seismogenic asperities on the Xianshuihe-Anninghe-Zemuhe fault system, southwest China, with a new 3D viscoelastic interseismic coupling model[J]. Journal of Geophysical Research:Solid Earth, 2015, 120(B3):1855-1873. [129] MASSONNET D, BRIOLE P, ARNAUD A. Deflation of Mount Etna monitored by spaceborne radar interferometry[J]. Nature, 1995, 375(6532):567-570. [130] PEPE A, MANZO M, CASU F, et al. Surface deformation of active volcanic areas retrieved with the SBAS-DInSAR technique:an overview[J]. Annals of Geophysics, 2009, 51(1):247. [131] PELTIER A, BIANCHI M, KAMINSKI E, et al. PSInSAR as a new tool to monitor pre-eruptive volcano ground deformation:validation using GPS measurements on Piton de La Fournaise[J]. Geophysical Research Letters, 2010, 37(12):245-269. [132] HOOPER A, ZEBKER H, SEGALL P, et al. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers[J]. Geophysical Research Letters, 2004, 31(23):2004GL021737. [133] WANG Guanya, XU Bing, LI Zhiwei, et al. A phase optimization method for DS-InSAR based on SKP decomposition from quad-polarized data[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5. [134] AMELUNG F, JÓNSSON S, ZEBKER H, et al. Widespread uplift and 'trapdoor' faulting on Galápagos volcanoes observed with radar interferometry[J]. Nature, 2000, 407(6807):993-996. [135] LU Z, MASTERLARK T, DZURISIN D. Interferometric synthetic aperture radar study of Okmok volcano, Alaska, 1992-2003:magma supply dynamics and postemplacement lava flow deformation[J]. Journal of Geophysical Research:Solid Earth, 2005, 110(B2):1-18. [136] WRIGHT T J, EBINGER C, BIGGS J, et al. Magma-maintained rift segmentation at continental rupture in the 2005 Afar dyking episode[J]. Nature, 2006, 442(7100):291-294. [137] BOUNTOS N I, PAPOUTSIS I, MICHAIL D, et al. Self-supervised contrastive learning for volcanic unrest detection[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5. [138] LU Zhong, MASTERLARK T, DZURISIN D, et al. Magma supply dynamics at Westdahl volcano, Alaska, modeled from satellite radar interferometry[J]. Journal of Geophysical Research:Solid Earth, 2003, 108(B7):2002JB002311. [139] JI L, LU Z, DZURISIN D, et al. Pre-eruption deformation caused by dike intrusion beneath Kizimen volcano, Kamchatka, Russia, observed by InSAR[J]. Journal of Volcanology and Geothermal Research, 2013, 256:87-95. [140] JI L, IZBEKOV P, SENYUKOV S, et al.Deformation patterns, magma supply, and magma storage at Karymsky Volcanic Center, Kamchatka, Russia, 2000-2010, revealed by InSAR[J]. Journal of Volcanology and Geothermal Research, 2018, 352:106-116. [141] FADHILLAH M F, HAKIM W L, PARK S, et al. Surface deformation simulation for InSAR detection using a machine learning approach on the hantangang river volcanic field:a case study on the orisan mountain[J]. Frontiers in Environmental Science, 2022,10:968120. [142] 涂梦昭, 刘志锋, 何春阳, 等. 基于GRACE卫星数据的中国地下水储量监测进展[J]. 地球科学进展, 2020, 35(6):643-656. TU Mengzhao, LIU Zhifeng, HE Chunyang, et al. Research progress of groundwater storage changes monitoring in China based on GRACE satellite data[J]. Advances in Earth Science, 2020, 35(6):643-656. [143] FENG W, ZHONG M, LEMOINE J M, et al. Evaluation of groundwater depletion in North China using the gravity recovery and climate experiment (GRACE) data and ground-based measurements[J]. Water Resources Research, 2013, 49:2110-2118. [144] 钟敏,段建宾,许厚泽,等.利用卫星重力观测研究近5年中国陆地水量中长空间尺度的变化趋势[J]. 科学通报, 2009, 54:1290-1294. ZHONG Min, DUAN Jianbin, XU Houze, et al. Using satellite gravity observations to study the trend of long-term spatial scale changes in land water volume in China over the past 5 years[J]. Chinese Science Bulletin, 2009, 54:1290-1294. [145] LIN M, BISWAS A, BENNETT E M. Identifying hotspots and representative monitoring area of groundwater changes with time stability analysis[J]. Science of the Total Environment, 2019, 667:419-426. [146] HU L, JIAO J J. Calibration of a large-scale groundwater flow model using GRACE data:a case study in the Qaidam Basin, China[J]. Hydrogeology Journal, 2015, 23:1305-1317. [147] TANGDAMRONGSUB N, HAN S C, TIAN Siyuan, et al. Evaluation of groundwater storage variations estimated from GRACE data assimilation and state-of-the-art land surface models in Australia and the North China plain[J]. Remote Sensing, 2018, 10(3):483. [148] HOFFMANN J, ZEBKER H A, GALLOWAY D L, et al. Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by synthetic aperture radar interferometry[J]. Water Resources Research, 2001, 37(6):1551-1566. [149] TANG W, ZHAO X, MOTAGH M, et al. Land subsidence and rebound in the Taiyuan basin, northern China, in the context of inter-basin water transfer and groundwater management[J]. Remote Sensing of Environment, 2022, 269:112792. |
[1] | 江碧涛. 我国空间对地观测技术的发展与展望[J]. 测绘学报, 2022, 51(7): 1153-1159. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||