测绘学报 ›› 2024, Vol. 53 ›› Issue (5): 959-966.doi: 10.11947/j.AGCS.2024.20230004
朱珺1,2(), 彭葳1(), 付海强3, 欧蔓3, 雷缮诚1, 张石平2
收稿日期:
2023-01-04
修回日期:
2024-04-19
发布日期:
2024-06-19
通讯作者:
彭葳
E-mail:jzhu@csust.edu.cn;pengwei@csust.edu.cn
作者简介:
朱珺(1986—),男,博士,讲师,研究方向为卫星大地测量。E-mail:jzhu@csust.edu.cn
基金资助:
Jun ZHU1,2(), Wei PENG1(), Haiqiang FU3, Man OU3, Shancheng LEI1, Shiping ZHANG2
Received:
2023-01-04
Revised:
2024-04-19
Published:
2024-06-19
Contact:
Wei PENG
E-mail:jzhu@csust.edu.cn;pengwei@csust.edu.cn
About author:
ZHU Jun (1986—), male, PhD, lecturer, majors in satellite geodesy. E-mail: jzhu@csust.edu.cn
Supported by:
摘要:
TerraSAR/TanDEM-X InSAR双站卫星系统是目前最主要的全球测图卫星系统之一,但该系统主要获取单基线、单极化InSAR数据。受观测信息不足的限制,无法直接分离植被体散射与地表散射信息,难以获取高精度的森林高度和林下地形。鉴于此,本文提出了联合单/双基线的大范围林下地形反演方法,其核心思想为:在InSAR干涉对重叠区,每个干涉对有不同的基线,两个干涉对重叠相当于双基线观测,可以采用RVoG模型估计森林高度。然后,利用简化的RVoG模型(C-SINC模型),以重叠区反演的树高结果为已知值,通过假定不同树高的散射过程具有相似性,对C-SINC模型进行求解进而获取林下地形。最后,以西班牙Teruel试验区对本文方法进行验证,与LiDAR DEM进行精度对比,InSAR DEM的RMSE为7.43 m,本文方法获取的林下地形RMSE为5.98 m,精度提高了20%。本文方法为利用TanDEM-X实现大范围林下地形测绘提供了参考。
中图分类号:
朱珺, 彭葳, 付海强, 欧蔓, 雷缮诚, 张石平. 观测信息不足条件下TanDEM-X InSAR的大范围林下地形反演[J]. 测绘学报, 2024, 53(5): 959-966.
Jun ZHU, Wei PENG, Haiqiang FU, Man OU, Shancheng LEI, Shiping ZHANG. Large-scale TanDEM-X InSAR sub-canopy topography inversion under insufficient observation information[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(5): 959-966.
[1] | 杜亚男, 冯光财, 李志伟, 等. TerraSAR-X/TanDEM-X获取高精度数字高程模型技术研究[J]. 地球物理学报, 2015, 58(9): 3089-3102. |
DU Yanan, FENG Guangcai, LI Zhiwei, et al. Generation of high precision DEM from TerraSAR-X/TanDEM-X[J]. Chinese Journal of Geophysics, 2015, 58(9): 3089-3102. | |
[2] | YAO Y, YANG Y, SUN H, et al. Geodesy discipline: progress and perspective[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4): 1-10. |
[3] | GRUBER A, WESSEL B, HUBER M, et al. Operational TanDEM-X DEM calibration and first validation results[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 73: 39-49. |
[4] | RIZZOLI P, MARTONE M, GONZALEZ C, et al. Generation and performance assessment of the global TanDEM-X digital elevation model[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 132: 119-139. |
[5] | 朱建军, 付海强, 汪长城. InSAR林下地形测绘方法与研究进展[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2030-2038. |
ZHU Jianjun, FU Haiqiang, WANG Changcheng. Methods and research progress of underlying topography estimation over forest areas by InSAR[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2030-2038. | |
[6] | 张涛, 朱建军, 付海强, 等. 单基线TanDEM-X InSAR相干性反演森林高度[J]. 测绘学报, 2022, 51(9): 1931-1941.DOI: 10.11947/j.AGCS.2022.20210298. |
ZHANG Tao, ZHU Jianjun, FU Haiqiang, et al. Forest height inversion with single-baseline TanDEM-X InSAR coherence[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(9): 1931-1941.DOI: 10.11947/j.AGCS.2022.20210298. | |
[7] | TANG Xinming, LI Tao, GAO Xiaoming, et al. Research on key technologies of precise InSAR surveying and mapping applications using automatic SAR imaging[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(1): 72. |
[8] | ZEBKER H A, GOLDSTEIN R M. Topographic mapping from interferometric synthetic aperture radar observations[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B5): 4993-4999. |
[9] | GARESTIER F, DUBOIS-FERNANDEZ P C, PAPATHANASSIOU K P. Pine forest height inversion using single-pass X-band PolInSAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 59-68. |
[10] | FU Haiqiang, WANG Changcheng, ZHU Jianjun, et al. Estimation of pine forest height and underlying DEM using multi-baseline P-band PolInSAR data[J]. Remote Sensing, 2016, 8(10): 820. |
[11] | FU Haiqiang, ZHU Jianjun, WANG Changcheng, et al. Underlying topography extraction over forest areas from multi-baseline PolInSAR data[J]. Journal of Geodesy, 2018, 92(7): 727-741. |
[12] | ZHU J, XIE Q, ZUO T, et al. Complex least squares adjustment to improve tree height inversion problem in PolInSAR[J]. Journal of Geodesy and Geoinformation Science, 2019, 44(1): 1-8. |
[13] | HUANG C, GONG W, PANG Y. Remote sensing and forest carbon monitoring: areview of recent progress, challenges and opportunities[J]. Journal of Geodesy and Geoinformation Science, 2022(002): 005. |
[14] | PAPATHANASSIOU K P, CLOUDE S R. Single-baseline polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(11): 2352-2363. |
[15] | O'LOUGHLIN F E, PAIVA R C D, DURAND M, et al. A multi-sensor approach towards a global vegetation corrected SRTM DEM product[J]. Remote Sensing of Environment, 2016, 182: 49-59. |
[16] | 张晨, 朱建军, 付海强. 基于ICESat-2数据及TanDEM-X DEM的林下地形反演[J]. 测绘工程, 2021, 30(1): 60-65. |
ZHANG Chen, ZHU Jianjun, FU Haiqiang. Sub-canopy topography inversion based on ICESat-2 and TanDEM-X DEM[J]. Engineering of Surveying and Mapping, 2021, 30(1): 60-65. | |
[17] | GALLANT J C, READ A M, DOWLING T I. Removal of tree offsets from srtm and other digital surface models[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, XXXIX-B4: 275-280. |
[18] | LEI Yang, TREUHAFT R, GONÇALVES F. Automated estimation of forest height and underlying topography over a Brazilian tropical forest with single-baseline single-polarization TanDEM-X SAR interferometry[J]. Remote Sensing of Environment, 2021, 252: 112132. |
[19] | WANG Huiqiang, FU Haiqiang, ZHU Jianjun, et al. Estimation of subcanopy topography based on single-baseline TanDEM-X InSAR data[J]. Journal of Geodesy, 2021, 95(7): 84. |
[20] | TREUHAFT R N, MADSEN S N, MOGHADDAM M, et al. Vegetation characteristics and underlying topography from interferometric radar[J]. Radio Science, 1996, 31(6): 1449-1485. |
[21] | CLOUDE S. Polarisation: applications in remote sensing[M]. London: Oxford University Press, 2009. |
[22] | GOMEZ C, LOPEZ-SANCHEZ J M, ROMERO-PUIG N, et al. Canopy height estimation in Mediterranean forests of Spain with TanDEM-X data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2956-2970. |
[23] | OLESK A, PRAKS J, ANTROPOV O, et al. Interferometric SAR coherence models for characterization of hemiboreal forests using TanDEM-X data[J]. Remote Sensing, 2016, 8(9): 700. |
[24] | OLESK A, VOORMANSIK K, VAIN A, et al. Seasonal differences in forest height estimation from interferometric TanDEM-X coherence data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(12): 5565-5572. |
[25] | NEUENSCHWANDER A, PITTS K. The ATL08 land and vegetation product for the ICESat-2 mission[J]. Remote Sensing of Environment, 2019, 221: 247-259. |
[26] | AROZARENA A, GARCIA L, VILLA G, et al. Spanish national plan for territory observation (PNOT)[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, 37: 1729-1733. |
[1] | 程结海, 黄中意, 王建如, 何湜. 高空间分辨率遥感影像最优分割结果自动确定方法[J]. 测绘学报, 2022, 51(5): 658-667. |
[2] | 梁哲恒, 黎宵, 邓鹏, 盛森, 姜福泉. 融合多尺度特征注意力的遥感影像变化检测方法[J]. 测绘学报, 2022, 51(5): 668-676. |
[3] | 白坤, 慕晓冬, 陈雪冰, 朱永清, 尤轩昂. 融合半监督学习的无监督遥感影像场景分类[J]. 测绘学报, 2022, 51(5): 691-702. |
[4] | 黄明益, 吴军, 高炯笠. 多镜头全景摄像机球面视频无缝生成[J]. 测绘学报, 2022, 51(5): 703-717. |
[5] | 王丹菂, 邢帅, 徐青, 林雨准, 李鹏程. 单频机载激光测深海陆回波自动分类方法[J]. 测绘学报, 2022, 51(5): 750-761. |
[6] | 张志敏. 基于遥感反照率的青藏高原冰川年际物质平衡估算研究[J]. 测绘学报, 2022, 51(5): 781-781. |
[7] | 李永强, 李鹏鹏, 董亚涵, 范辉龙. 车载LiDAR点云数据中杆状地物自动提取与分类[J]. 测绘学报, 2020, 49(6): 724-735. |
[8] | 王竞雪, 刘肃艳, 王伟玺. 联合共线约束与匹配冗余的组直线匹配结果检核算法[J]. 测绘学报, 2020, 49(6): 746-756. |
[9] | 詹总谦, 胡孟琦, 满益云. 多尺度区域生长点云滤波地表拟合法[J]. 测绘学报, 2020, 49(6): 757-766. |
[10] | 韩斌, 吴一全. SAR图像河流提取的主动轮廓模型的稳健估计算法[J]. 测绘学报, 2020, 49(6): 777-786. |
[11] | 邓睿哲, 陈启浩, 陈奇, 刘修国. 遥感影像船舶检测的特征金字塔网络建模方法[J]. 测绘学报, 2020, 49(6): 787-797. |
[12] | 黄亮. 多时相遥感影像变化检测技术研究[J]. 测绘学报, 2020, 49(6): 801-801. |
[13] | 吴文豪, 张磊, 李陶, 龙四春, 段梦, 周志伟, 祝传广, 蒋廷臣. 基于几何配准的多模式SAR影像配准及其误差分析[J]. 测绘学报, 2019, 48(11): 1439-1451. |
[14] | 赵生银, 安如, 朱美如. 联合像元-深度-对象特征的遥感图像城市变化检测[J]. 测绘学报, 2019, 48(11): 1452-1463. |
[15] | 刘照欣, 赵辽英, 厉小润, 陈淑涵. 高光谱亚像元定位的线特征探测法[J]. 测绘学报, 2019, 48(11): 1464-1474. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||