测绘学报 ›› 2024, Vol. 53 ›› Issue (6): 1154-1164.doi: 10.11947/j.AGCS.2024.20230445

• 智能化测绘 • 上一篇    下一篇

等高线形态知识与图神经网络联合作用下的黄土地貌类型识别

孔博(), 艾廷华(), 杨敏, 吴昊, 余华飞, 肖天元   

  1. 武汉大学资源与环境科学学院,湖北 武汉 430079
  • 收稿日期:2023-09-29 发布日期:2024-07-22
  • 通讯作者: 艾廷华 E-mail:bokong@whu.edu.cn;tinghuaai@whu.edu.cn
  • 作者简介:孔博(1998—),男,博士生,研究方向为深度学习下的空间认知。 E-mail:bokong@whu.edu.cn
  • 基金资助:
    国家自然科学基金(42394065)

Identification of loess landform types jointly affected by contour morphological knowledge and the graph neural network

Bo KONG(), Tinghua AI(), Min YANG, Hao WU, Huafei YU, Tianyuan XIAO   

  1. School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
  • Received:2023-09-29 Published:2024-07-22
  • Contact: Tinghua AI E-mail:bokong@whu.edu.cn;tinghuaai@whu.edu.cn
  • About author:KONG Bo (1998—), male, PhD candidate, majors in spatial cognition under deep learning. E-mail: bokong@whu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(42394065)

摘要:

摘要:地貌类型识别是多因素联合影响下的复杂决策问题。由于地貌区域环境的广泛性、差异性及地学要素作用的复杂性,简单地引入人工智能方法,通过典型样本监督学习并不能获得该问题的满意结果。因此,本文尝试将等高线形态知识这种测绘自然智能与人工智能结合,在地形形态表达规则和典型地貌类型样本训练联合驱动下,开展混合智能下黄土地貌类型识别研究,提出了整合等高线形态知识与带池化操作图神经网络(graph neural network,GNN)的地貌类型识别方法。本文方法将地貌单元的等高线建模为图结构,并将提取的等高线顶点的形态知识嵌入图节点中,采用带池化操作的GNN模型,挖掘图结构中的高层次特征和上下文信息,以识别地貌类型识别。试验结果证明了本文方法在黄土地貌类型识别上的有效性:在测试数据上获得了86.1%的F1值,比两个对比方法高出3.0%~8.2%。

关键词: 黄土地貌, 模式识别, 等高线数据, 图神经网络

Abstract:

Landform type identification is a complex decision-making problem jointly affected by multi-factors. Due to the extensiveness and differences of landform regional environments and the complexity of the roles of geological elements, it is not possible to obtain satisfactory results by simply introducing artificial intelligence (AI) methods and supervising learning through typical samples. Thus, this study tries to integrate the knowledge of contour morphology as the natural intelligence in surveying and mapping into AI technology and carries out the research on loess landform type identification by hybrid intelligence integrating landform sample training and landform morphological representation rules. This paper presents a landform type recognition method that integrates contour morphological knowledge with the graph neural network (GNN). In this method, the contours of the landform unit are modeled as a graph structure composed of nodes and connecting edges, and the extracted contour vertex morphology knowledge is embedded in the graph nodes. A GNN model with pooling operations is used to mine high-level features and context information in the graph structure to identify unit types. The experimental results demonstrate the effectiveness of the proposed approach in identifying loess landform types, achieving an F1 score of 86.1% on the test dataset, which represents a 3.0%~8.2% improvement over the two comparative methods.

Key words: loess landforms, pattern identification, contour data, graph neural networks

中图分类号: