测绘学报 ›› 2025, Vol. 54 ›› Issue (3): 523-535.doi: 10.11947/j.AGCS.2025.20230586

• 摄影测量学与遥感 • 上一篇    下一篇

面向复杂地下空间的多源传感器数据动态加权融合SLAM方法

蔺小虎1,2,3(), 杨鑫4, 姚顽强1(), 马宏伟3, 马柏林1, 马雄伟1   

  1. 1.西安科技大学测绘科学与技术学院,陕西 西安 710054
    2.自然资源部矿山地质灾害成灾机理与防控重点实验室,陕西 西安 710054
    3.西安科技大学机械工程学院,陕西 西安 710054
    4.武汉大学测绘学院,湖北 武汉 430079
  • 收稿日期:2023-12-22 出版日期:2025-04-11 发布日期:2025-04-11
  • 通讯作者: 姚顽强 E-mail:xhlin214@xust.edu.cn;sxywq@163.com
  • 作者简介:蔺小虎(1989—),男,博士,副教授,研究方向为多源数据融合处理及应用。 E-mail:xhlin214@xust.edu.cn
  • 基金资助:
    国家自然科学基金(42201484);自然资源部矿山地质灾害成灾机理与防控重点实验室重点课题(2022-03);中国博士后科学基金(2023MD744243)

A dynamic weighted fusion SLAM method using multi-source sensor data in complex underground spaces

Xiaohu LIN1,2,3(), Xin YANG4, Wanqiang YAO1(), Hongwei MA3, Bolin MA1, Xiongwei MA1   

  1. 1.College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
    2.Key Laboratory of Mine Geological Hazards Mechanism and Control, Ministry of Natural Resources, Xi'an 710054, China
    3.School of Mechanical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
    4.School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
  • Received:2023-12-22 Online:2025-04-11 Published:2025-04-11
  • Contact: Wanqiang YAO E-mail:xhlin214@xust.edu.cn;sxywq@163.com
  • About author:LIN Xiaohu (1989—), male, PhD, associate professor, majors in multi-source data fusion, processing and applications. E-mail: xhlin214@xust.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(42201484);Key Laboratory of Mine Geological Hazards Mechanism and Control, Ministry of Natural Resources(2022-03);China Postdoctoral Science Foundation(2023MD744243)

摘要:

同时定位与建图(simultaneous localization and mapping,SLAM)是地下空间自主探测、自动巡检和应急救援的关键。然而,地下空间巷道狭长、地形复杂、光照不均等使得激光点云和视觉图像匹配极易发生退化,进而导致多源传感器数据融合SLAM精度不足,甚至失效。为此,本文提出一种增强稳健性的多源传感器数据动态加权融合SLAM方法。首先,在视觉图像预处理阶段,采用了一种基于色调、饱和度、亮度(hue,stauration,value,HSV)空间的图像增强技术,结合单参数同态滤波和对比度受限的自适应直方图均衡化(contrast limited adaptive histogram equalization,CLAHE)算法,有效提升了地下空间图像的亮度和对比度,从而增强了视觉里程计的稳健性。然后,通过马氏距离一致性检验方法对各传感器的数据质量进行评估,分析数据退化情况,并自适应地选择适合当前场景的传感器数据进行融合。最后,在综合考虑各传感器关键参数的基础上,构建了多源传感器因子图模型,并根据数据质量动态调整各传感器数据融合因子的权重,形成多源传感器数据权重动态组合模型。为验证本文方法的有效性,使用自主设计集成的移动机器人在地下走廊、开挖的地铁隧道和煤矿巷道等典型地下空间中分别进行了试验,并与多种主流SLAM方法进行定性、定量对比分析。结果表明:本文方法最大轨迹均方根误差(root mean square error,RMSE)仅为0.19 m,以高精度地面三维激光扫描获取的点云为参考,平均点云直接距离比较(cloud to cloud,C2C)小于0.13 m,所构建的点云地图具有较好的全局一致性和几何结构真实性,验证了本文方法在复杂地下空间具有更高的精度和稳健性。

关键词: 复杂地下空间, 图像增强, 多源传感器数据融合, 动态加权, 智能感知

Abstract:

Simultaneous localization and mapping (SLAM) is pivotal for autonomous detection, automatic inspection, and emergency rescue in underground spaces. However, the challenges of narrow and long tunnels, complex terrain, and uneven illumination in underground spaces make LiDAR point cloud and visual image matching highly susceptible to degradation. This, in turn, results in insufficient accuracy or even failure of SLAM when fusing multi-sensor data. To address this challenge, we propose a dynamic weighted fusion SLAM method for multi-source sensor data with enhanced robustness. First, during the visual image preprocessing stage, an image enhancement technique based on the hue, saturation, and value (HSV) color space is employed. This method combines single-parameter homomorphic filtering with contrast limited adaptive histogram equalization (CLAHE) to effectively enhance the brightness and contrast of the image. This improvement strengthens the robustness of visual odometry. Next, the data quality of each sensor is evaluated using a Mahalanobis distance consistency test, which analyzes potential data degradation and adaptively selects the most suitable sensor data for fusion based on the current scene. Finally, considering the key parameters of each sensor, we construct the multi-source sensor factor graph model. The dynamic combination of multi-source sensor data weights is then formed according to the data quality model, allowing for the dynamic adjustment of the weight of each sensor data fusion factor. To verify the effectiveness of the proposed method, experiments were conducted in typical underground spaces such as underground corridors, excavated subway tunnels, and coal mine tunnels using self-designed and integrated mobile robots. Qualitative and quantitative comparative analyses were performed against various state-of-the-art methods. The results demonstrate that the maximum root mean square error (RMSE) of the proposed method is only 0.19 m. The average cloud to cloud (C2C) distance is less than 0.13 m, referencing the point cloud acquired by high-precision terrestrial 3D laser scanning. Additionally, the constructed point cloud maps exhibit superior global consistency and geometric structure authenticity. These findings confirm that the proposed method offers higher accuracy and robustness in complex underground spaces.

Key words: complex underground spaces, image enhancement, multi-source sensor data fusion, dynamic weight, intelligent perception

中图分类号: