测绘学报 ›› 2025, Vol. 54 ›› Issue (2): 272-285.doi: 10.11947/j.AGCS.2025.20240103
• 海洋测量 • 上一篇
施宏凯1(), 何秀凤1(
), 吴怿昊1, 郑翔天2, 宋敏峰1
收稿日期:
2024-03-15
发布日期:
2025-03-11
通讯作者:
何秀凤
E-mail:shk@hhu.edu.cn;xfhe@hhu.edu.cn
作者简介:
施宏凯(1993—),男,博士,研究方向为卫星测高及海洋动力学建模。 E-mail:shk@hhu.edu.cn
基金资助:
Hongkai SHI1(), Xiufeng HE1(
), Yihao WU1, Xiangtian ZHENG2, Minfeng SONG1
Received:
2024-03-15
Published:
2025-03-11
Contact:
Xiufeng HE
E-mail:shk@hhu.edu.cn;xfhe@hhu.edu.cn
About author:
SHI Hongkai (1993—), male, PhD, majors in satellite altimetry and ocean dynamic modeling. E-mail: shk@hhu.edu.cn
Supported by:
摘要:
获取近海区域,特别是离岸3 km以内的海陆交界区的海面高度信息,一直是卫星测高技术面临的重大挑战。针对这一问题,本文深入研究了全聚焦SAR(fully-focused synthetic aperture radar,FFSAR)测高技术,提出了一种基于污染信号剔除和距离补偿的海面高提取算法,并引入验潮站数据作为独立验证数据,评估了不同沿轨向采样频率(20、80、200及600 Hz)下FFSAR在强干扰海域的测高精度。研究结果表明,在近海1~3 km的强干扰海域:①将FFSAR采样率由20 Hz提升至200 Hz,可以显著提升数据可用性及测高精度。②基于本文算法得到的200 Hz测高结果与验证数据差异的标准差分别由20 Hz结果的0.36(TGWD)、0.31(EEMSHAVEN)、0.68(DENHELDER)和0.17 m(IJMON)降至0.22、0.22、0.48和0.14 m,精度提升超过20%。③在200 Hz采样率下,相较MWaPP和PP-OCOG算法,本文算法得到的测高结果与验证数据的一致性更高。
中图分类号:
施宏凯, 何秀凤, 吴怿昊, 郑翔天, 宋敏峰. 近海强干扰区域高频全聚焦SAR波形污染识别与海面高精确提取算法[J]. 测绘学报, 2025, 54(2): 272-285.
Hongkai SHI, Xiufeng HE, Yihao WU, Xiangtian ZHENG, Minfeng SONG. Waveform contamination identification and accurate sea surface height extraction algorithm for high-frequency fully-focused SAR in severely interfered coastal regions[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(2): 272-285.
[1] | 许厚泽, 王海瑛, 陆洋, 等. 利用卫星测高数据推求中国近海及邻域大地水准面起伏和重力异常研究[J]. 地球物理学报, 1999(4): 465-471. |
XU Houze, WANG Haiying, LU Yang, et al. Geoid undulations and gravity anomalies from T/P and ERS-1 altimeter data in the China sea and vicinity[J]. Chinese Journal of Geophysics (in Chinese), 1999, 42(4): 465-471. | |
[2] | 李建成, 金涛勇. 卫星测高技术及应用若干进展[J]. 测绘地理信息, 2013, 38(4): 1-8. |
LI Jiancheng, JIN Taoyong. On the main progress of satellite altimetry and its applications[J]. Journal of Geomatics, 2013, 38(4): 1-8. | |
[3] | SHI Hongkai, HE Xiufeng, WU Yihao, et al. Spectrally consistent mean dynamic topography by combining mean sea surface and global geopotential model through a least squares-based approach[J]. Frontiers in Earth Science, 2022, 10: 795935. |
[4] | VIGNUDELLI S, AKHIR M F, ZAINOL Z, et al. Coastal altimetry[M]. San Diego: Elsevier, 2023: 1-19. |
[5] | WU Yihao, ABULAITIJIANG A, FEATHERSTONE W E, et al. Coastal gravity field refinement by combining airborne and ground-based data[J]. Journal of Geodesy, 2019, 93(12): 2569-2584. |
[6] | VIGNUDELLI S, BIROL F, BENVENISTE J, et al. Satellite altimetry measurements of sea level in the coastal zone[J]. Surveys in Geophysics, 2019, 40(6): 1319-1349. |
[7] | IDRIS N H, VIGNUDELLI S, DENG Xiaoli. Assessment of retracked sea levels from Sentinel-3A synthetic aperture radar (SAR) mode altimetry over the marginal seas at Southeast Asia[J]. International Journal of Remote Sensing, 2021, 42(4): 1535-1555. |
[8] | DENG X, FEATHERSTONE W E. A coastal retracking system for satellite radar altimeter waveforms: application to ERS-2 around Australia[J]. Journal of Geophysical Research: Oceans, 2006, 111(C6): 2005JC003039. |
[9] | RANEY R K. The delay/Doppler radar altimeter[J]. IEEE Transactions on Geoscience and Remote Sensing, 36(5): 1578-1588. |
[10] | LABROUE S, BOY F, PICOT N, et al. First quality assessment of the Cryosat-2 altimetric system over ocean[J]. Advances in Space Research, 2012, 50(8): 1030-1045. |
[11] | JIANG Liguang, NIELSEN K, DINARDO S, et al. Evaluation of Sentinel-3 SRAL SAR altimetry over Chinese rivers[J]. Remote Sensing of Environment, 2020, 237: 111546. |
[12] | PENG Fukai, DENG Xiaoli. Validation of Sentinel-3A SAR mode sea level anomalies around the Australian coastal region[J]. Remote Sensing of Environment, 2020, 237: 111548. |
[13] | DINARDO S, MARALDI C, CADIER E, et al. Sentinel-6 MF Poseidon-4 radar altimeter: main scientific results from S6PP LRM and UF-SAR chains in the first year of the mission[J]. Advances in Space Research, 2024, 73(1): 337-375. |
[14] | BOY F, DESJONQUERES J D, PICOT N, et al. CryoSat-2 SAR-mode over oceans: processing methods, global assessment, and benefits[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 148-158. |
[15] | DINARDO S. Techniques and applications for satellite SAR altimetry over water, land and ice[DB/OL]. Darmstadt: Technische Universität. [2024-04-03]. https://tuprints.ulb.tu-darmstadt.de/id/eprint/11343. |
[16] | KLEINHERENBRINK M, NAEIJE M, SLOBBE C, et al. The performance of CryoSat-2 fully-focussed SAR for inland water-level estimation[J]. Remote Sensing of Environment, 2020, 237: 111589. |
[17] | EGIDO A, SMITH W H F. Fully focused SAR altimetry: theory and applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 392-406. |
[18] | HERNÁNDEZ-BURGOS S, GIBERT F, BROQUETAS A, et al. A fully focused SAR Omega-K closed-form algorithm for the Sentinel-6 radar altimeter: methodology and applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 3367544. |
[19] | 施宏凯. 融合SAR高度计及多源测高数据的海岸带稳态海面地形重建方法研究[D]. 南京: 河海大学, 2022. |
SHI Hongkai. Coastal mean dynamic topography modeling method from SAR and multi-source altimetric data[D]. Nanjing: Hohai University, 2022. | |
[20] | RIEU P, MOREAU T, AMAROUCHE L, et al. From unfocused to fully-focused SAR processing: benefits for different surfaces[C]//Proceedings of 2018 Progress in Radar Altimetry Symposium. Ponta Delgada: [s.n.], 2018: 20. |
[21] | SCHLEMBACH F, EHLERS F, KLEINHERENBRINK M, et al. Benefits of fully focused SAR altimetry to coastal wave height estimates: a case study in the North Sea[J]. Remote Sensing of Environment, 2023, 289: 113517. |
[22] | EGIDO A, DINARDO S, RAY C. The case for increasing the posting rate in delay/Doppler altimeters[J]. Advances in Space Research, 2021, 68(2): 930-936. |
[23] | FENG Hui, EGIDO A, VANDEMARK D, et al. Exploring the potential of Sentinel-3 delay Doppler altimetry for enhanced detection of coastal currents along the Northwest Atlantic shelf[J]. Advances in Space Research, 2023, 71(1): 997-1016. |
[24] | CHOI J H, JANG J H, ROH J E. Design of an FMCW radar altimeter for wide-range and low measurement error[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(12): 3517-3525. |
[25] | 杨双宝. 基于合成孔径技术的高精度雷达高度计技术研究[D]. 北京: 中国科学院研究生院(空间科学与应用研究中心), 2007. |
YANG Shuangbao. High-precision radar altimeter technology based on synthetic aperture techniques[D]. Beijing: Chinese Academy of Sciences (The National Space Science Center), 2007. | |
[26] | KLEINHERENBRINK M, SMITH W H F, NAEIJE M C, et al. The second-order effect of Earth's rotation on Cryosat-2 fully focused SAR processing[J]. Journal of Geodesy, 2020, 94(1): 7-16. |
[27] | ROUFFI F. Product data format specification - SRAL and MWR Level 1 products[EB/OL]. [2023-11-15]. https://sentinels.copernicus.eu/documents/247904/2753172/Sentinel-3-Product-Data-Format-Specification-Level-1-products.pdf/2b7c773b-44ca-447e-9b86-f7ebd231261c?t=1611592438951. |
[28] | EHLERS F, SCHLEMBACH F, KLEINHERENBRINK M, et al. Validity assessment of SAMOSA retracking for fully-focused SAR altimeter waveforms[J]. Advances in Space Research, 2023, 71(3): 1377-1396. |
[29] | BOY F, CRETAUX J F, BOUSSAROQUE M, et al. Improving Sentinel-3 SAR mode processing over lake using numerical simulations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-18. |
[30] | JAIN M, ANDERSEN O B, DALL J, et al. Sea surface height determination in the Arctic using Cryosat-2 SAR data from primary peak empirical retrackers[J]. Advances in Space Research, 2015, 55(1): 40-50. |
[31] | YUAN Jiajia, GUO Jinyun, ZHU Chengcheng, et al. SDUST2020 MSS: a global 1′×1′ mean sea surface model determined from multi-satellite altimetry data[J]. Earth System Science Data, 2023, 15(1): 155-169. |
[32] | LARSON K M, RAY R D, WILLIAMS S D P. A 10-year comparison of water levels measured with a geodetic GPS receiver versus a conventional tide gauge[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(2): 295-307. |
[33] | HOFSTEDE J L A. Process-response analysis for Hörnum tidal inlet in the German sector of the Wadden sea[J]. Quaternary International, 1999, 60(1): 107-117. |
[34] | TOMIĆ M, BREILI K, GERLACH C, et al. Validation of retracked Sentinel-3 altimetry observations along the Norwegian coast[J]. Advances in Space Research, 2024, 73(8): 4067-4090. |
[35] | KE B, ZHANG L, XU J, et al. Determination of the mean dynamic ocean topography model through combining multi-source gravity data and DTU15 MSS around China's coast[J]. Advances in Space Research, 2019, 63(1): 203-212. |
[36] | SCHLEMBACH F, PASSARO M, DETTMERING D, et al. Interference-sensitive coastal SAR altimetry retracking strategy for measuring significant wave height[J]. Remote Sensing of Environment, 2022, 274: 112968. |
[1] | 陈灵秋, 柴洪洲, 暴景阳, 王敏, 郑乃铨. 基于多模多频SNR数据逆建模反演海面高度变化[J]. 测绘学报, 2024, 53(11): 2099-2110. |
[2] | 安邦, 于瑶瑶, 徐焕, 于锦海, 田彧玮. 移去-恢复法在基于重力异常的海底地形解析迭代算法中的应用[J]. 测绘学报, 2024, 53(8): 1517-1530. |
[3] | 李凡, 金绍华, 边刚, 崔杨, 汤寓麟, 张永厚. 多波束测深误差改进模型构建与验证[J]. 测绘学报, 2022, 51(5): 762-771. |
[4] | 余文坤, 吴佩达, 张昊楠, 胡广浩, 阮福明, 戴吾蛟, 匡翠林. 基于多项式曲线拟合的海上地震勘探拖缆定位[J]. 测绘学报, 2022, 51(5): 772-780. |
[5] | 陈志高. 长江口局域时空流场构建及实时流量精确估计[J]. 测绘学报, 2020, 49(6): 802-802. |
[6] | 刘聚, 暴景阳, 许军. 水位改正的天文潮时差方法[J]. 测绘学报, 2019, 48(9): 1161-1170. |
[7] | 刘洋, 吴自银, 赵荻能, 周洁琼, 尚继宏, 王明伟, 朱超, 鲁号号. MF多源测深数据融合方法及大洋水深模型构建[J]. 测绘学报, 2019, 48(9): 1171-1181. |
[8] | 张瑞辰, 边少锋, 刘雁春, 李厚朴. 大面积水深异常检测的条件变化自编码算法[J]. 测绘学报, 2019, 48(9): 1182-1189. |
[9] | 孙文舟, 殷晓冬, 曾安敏, 暴景阳. 附加深度差和水平距离约束的深海控制点差分定位算法[J]. 测绘学报, 2019, 48(9): 1190-1196. |
[10] | 孟俊霞. 多波束水柱数据中气泡羽状流探测方法与研究[J]. 测绘学报, 2019, 48(8): 1070-1070. |
[11] | 李铁, 周丰年, 赵建虎. 多波束系统安装偏差整体校准的地形特征匹配方法[J]. 测绘学报, 2019, 48(4): 512-519. |
[12] | 严俊. 多波束与侧扫声呐高质量测量信息获取与叠加[J]. 测绘学报, 2019, 48(3): 400-400. |
[13] | 赵荻能, 吴自银, 李家彪, 周洁琼, 张田升, 刘洋, 朱超, 余威. CUBE曲面滤波参数联合优选关键技术及应用[J]. 测绘学报, 2019, 48(2): 245-255. |
[14] | 苗润龙, 庞硕, 姜大鹏, 董早鹏. 海洋自主航行器多海湾区域完全遍历路径规划[J]. 测绘学报, 2019, 48(2): 256-264. |
[15] | 孙文舟, 殷晓冬, 暴景阳, 曾安敏. 海底控制点定位的半参数平差模型法[J]. 测绘学报, 2019, 48(1): 117-123. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 32
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 48
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||