测绘学报 ›› 2025, Vol. 54 ›› Issue (5): 899-910.doi: 10.11947/j.AGCS.2025.20240142

• 摄影测量学与遥感 • 上一篇    下一篇

基于LM模型的超大规模影像分布式光束法平差方法

郑茂腾1,2(), 鲁一慧3, 朱俊锋4, 曾晓茹4, 邱焕斌5, 江钰尧1, 卢星月1, 渠豪4, 陈能成1()   

  1. 1.中国地质大学(武汉)国家地理信息系统工程技术研究中心,湖北 武汉 430078
    2.中国地质大学(武汉)自然资源信息管理与数字孪生工程软件教育部工程研究中心,湖北 武汉 430078
    3.山东省国土测绘院,山东 济南 250012
    4.北京中测智绘科技有限公司,北京 100010
    5.广州建通地理信息集团股份有限公司,广东 广州 510663
  • 收稿日期:2024-04-10 修回日期:2025-04-23 出版日期:2025-06-23 发布日期:2025-06-23
  • 通讯作者: 陈能成 E-mail:tengve@163.com;cnc@whu.edu.cn
  • 作者简介:郑茂腾(1987—),男,博士,副研究员,主要从事航空航天摄影测量、计算机视觉三维重建的理论方法和应用研究。E-mail:tengve@163.com
  • 基金资助:
    湖北省自然科学基金(2024AFB680);湖北珞珈实验室重点基金(220100034)

Distributed bundle adjustment method for super large-scale datasets based on LM algorithm

Maoteng ZHENG1,2(), Yihui LU3, Junfeng ZHU4, Xiaoru ZENG4, Huanbin QIU5, Yuyao JIANG1, Xingyue LU1, Hao QU4, Nengcheng CHEN1()   

  1. 1.National Engineering Research Center of Geographic Information System, China University of Geosciences, Wuhan 430078, China
    2.Engineering Research Center of Natural Resource Information Management and Digital Twin Engineering Software, Ministry of Education, China University of Geosciences, Wuhan 430078, China
    3.Shandong Provincial Institute of Land Surveying and Mapping, Jinan 250012, China
    4.Smart Mapping Technology, Beijing 100010, China
    5.Jiantong Survey, Guangzhou 510663, China
  • Received:2024-04-10 Revised:2025-04-23 Online:2025-06-23 Published:2025-06-23
  • Contact: Nengcheng CHEN E-mail:tengve@163.com;cnc@whu.edu.cn
  • About author:ZHENG Maoteng (1987—), male, PhD, associate researcher, majors in theoretical methods and application research of aerospace photogrammetry and computer vision 3D reconstruction. E-mail: tengve@163.com
  • Supported by:
    The Natural Science Foundation of Hubei(2024AFB680);Hubei Luojia Laboratory Foundation(220100034)

摘要:

针对超大规模数据的整体光束法平差问题,本文提出一种基于LM模型的分布式光束法平差方法。为了解决大规模法方程系数矩阵的存储以及求解运算,利用法方程系数矩阵的稀疏块状特性,使用一种块状稀疏矩阵压缩格式(BSMC)对其进行压缩,该格式还支持对法方程系数矩阵的分布式存储和更新。基于上述压缩格式,建立了基于严格LM模型的分布式光束法平差框架,通过对法方程进行分布式构建以及对其他计算复杂度较高的步骤进行并行化设计,实现了对超大规模数据的整体光束法平差。通过对本文方法和国际上同类方法的全面对比试验,初步结果表明,本文方法对内存的需求大幅减少,数据处理容量大幅提升,首次在分布式计算系统上实现对118万张影像的真实数据和1000万张影像的模拟数据(处理的数据量大约是当前基于LM模型最好方法的500倍)的基于LM模型的整体光束法平差。

关键词: 分布式并行, 光束法平差, LM模型, 稀疏矩阵压缩, 预条件共轭梯度

Abstract:

This paper proposes a distributed bundle adjustment method based on Levenberg Marquardt (LM) model for large-scale dataset. In order to solve the storage and solution of large-scale coefficient matrix of normal equation, a block-based sparse matrix compression format (BSMC) is used to compress the coefficient matrix of normal equation by taking advantage of its sparse block characteristics. This format also supports distributed storage and update of the coefficient matrix of normal equation. Based on the above compression format, a distributed bundle adjustment method adjustment framework based on the strict LM model has been established. By constructing the normal equations in distributed parallel and parallelizing other steps with high computational complexity, the distributed bundle adjustment for large-scale dataset has been achieved. Through comprehensive comparative experiments between the method proposed in this paper and state-of-the-art methods, the preliminary results show that the memory requirement of this method is significantly reduced, and the data processing capacity is significantly improved. For the first time, we have implemented a bundle adjustment based on the LM strict model on a distributed computing system, which includes real dataset with 1.18 million images and simulated dataset with 10 million images (approximately 500 times the state-or-the-art method based on the LM strict model).

Key words: distributed computing system, bundle adjustment, Levenberg Marquardt algorithm, sparse matrix compression, preconditioned conjugate gradient

中图分类号: