测绘学报 ›› 2014, Vol. 43 ›› Issue (12): 1300-1306.doi: 10.13485/j.cnki.11-2089.2014.0166

• 学术论文 • 上一篇    

利用层次Voronoi图进行点群综合

李佳田, 康顺, 罗富丽   

  1. 昆明理工大学 国土资源工程学院, 云南 昆明 650093
  • 收稿日期:2013-06-03 修回日期:2014-01-01 出版日期:2014-12-20 发布日期:2014-12-23
  • 作者简介:李佳田(1975-),男,博士,副教授,研究方向为GIS不规则空间剖分模型与算法.ljtwcx@163.com
  • 基金资助:
    国家自然科学基金(41161061;40901197)

Point Group Generalization Method Based on Hierarchical Voronoi Diagram

LI Jiatian, KANG Shun, LUO Fuli   

  1. Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • Received:2013-06-03 Revised:2014-01-01 Online:2014-12-20 Published:2014-12-23

摘要: 通过距离权重描述点的重要程度,采用改进的k-means算法得到点群的聚类中心,进而以聚类中心为基础,构建了层次加权Voronoi图与Voronoi层次树结构.以点群的分布范围、排列方式与密度为度量,给出了基于Voronoi层次树结构的点群综合方法,确保了点群综合前后在空间形态分布上的一致性.结合地理统计学计算,对综合方法作了进一步的量化评估与优化.经验证,本文方法是可行、有效的.

关键词: 点群综合, 权重, 空间聚类, 层次Voronoi图, 树结构

Abstract: The importance of the point is described by distance weight and the clustering center point of a point group is obtained by modified k-means algorithm. Furthermore, the clustering center is taken as base to construct hierarchical weighted Voronoi diagram and hierarchical tree structure. Distribution scope, arrangement, and density of the group is taken as the measurement to construct the point generalization method based on hierarchical Voronoi diagram tree structure, thus ensuring the consistency in spatial morphology before and after. Combination with geological statistics calculation, this generalization method is estimated and optimized. Finally, the practicability and availability of this method is confirmed through concrete experiment.

Key words: point group generalization, weight, spatial clustering, hierarchical Voronoi diagram, tree structure

中图分类号: