测绘学报 ›› 2014, Vol. 43 ›› Issue (11): 1182-1189.doi: 10.13485/j.cnki.11-2089.2014.0182

• 学术论文 • 上一篇    下一篇

属类概率距离构图的半监督高光谱图像分类

邵远杰1,吴国平1,马丽2   

  1. 1. 中国地质大学(武汉)
    2. 中国地质大学机械与电子信息学院通信工程系
  • 收稿日期:2013-01-15 修回日期:2014-03-26 出版日期:2014-11-20 发布日期:2014-12-02
  • 通讯作者: 马丽 E-mail:maryparisster@gmail.com
  • 基金资助:

    国家自然科学基金项目资助;中央高校基本科研业务费专项资金资助

Graph based Semi-Supervised Learning with Class-Probability Distance for Hyperspectral Remote Sensing Image Classification

SHAO Yuanjie,WU Guoping,MA Li   

  1. China University of Geosciences
  • Received:2013-01-15 Revised:2014-03-26 Online:2014-11-20 Published:2014-12-02
  • Contact: MA Li E-mail:maryparisster@gmail.com

摘要:

提出一种利用属类概率距离构图的半监督学习算法,并应用于高光谱图像分类。首先,该算法利用基于分类的稀疏表达方法来预估未标记样本的属类概率向量,然后,利用这个概率向量对描述数据相似性的距离函数进行改造,改造后的距离函数能有效扩大异类样本点之间的距离,在新的距离函数的度量下,每个样本点的邻域中可包含更多同类的样本点。最后,将该距离函数应用于半监督学习线性邻域传播算法和标签传播算法中。在Hyperion 和AVIRIS高光谱遥感图像上的实验结果表明:相比于传统的基于图的半监督学习算法,该算法能有效提高高光谱遥感图像分类精度。

关键词: 高光谱图像分类, 图, 半监督学习, 稀疏表达, 属类概率距离

Abstract:

A class-probability distance based semi-supervised learning method is proposed for hyperspectral remote sensing image classification. In the method, Sparse Representation based Classification (SRC) is adopted for estimating the class-probability of unlabeled sample. Then a distance metric that describes the data similarity is developed based on the estimated class-probability. With this new distance metric, the distance between samples of different classes is enlarged effectively, and the neighbors of each sample can contain more samples belonging to the same class. Finally, this distance metric is applied to Linear Neighborhood Propagation and Label Propagation algorithms. Experimental results using Hyperion and AVIRIS hyperspectral remote sensing images show that the approach outperforms the existing semi-supervised learning methods in terms of classification accuracy.

Key words: hyperspectral remote sensing image classification, graph, semi-supervised learning, sparse representation, class-probability distance

中图分类号: