摘要: 虽然支持向量机在高光谱影像分类得到成功应用,但是它自身固有许多不足之处。相关向量机是在贝叶斯框架下提出的更加稀疏的学习机器,它没有规则化系数,其核函数不需要满足Mercer条件,不仅具备良好的泛化能力,而且还能够得到具有统计意义的预测结果。本文从分析支持向量机用于高光谱影像分类存在的不足出发,提出了一种基于相关向量机的高光谱影像分类方法,介绍了稀疏贝叶斯分类模型,将相关向量机学习转化为最大化边缘似然函数估计问题,并采用了快速序列稀疏贝叶斯学习算法。通过PHI和OMIS影像分类实验分析表明了基于相关向量机的高光谱影像分类方法的优越性。