测绘学报

• 学术论文 • 上一篇    下一篇

基于相关向量机的高光谱影像分类研究

杨国鹏1,余旭初2,周欣3,张鹏强   

  • 收稿日期:2009-07-17 修回日期:2009-09-17 出版日期:2010-12-22 发布日期:2010-12-22
  • 通讯作者: 余旭初

Research on Relevance Vector Machine Hyperspectral Imagery Classification

  • Received:2009-07-17 Revised:2009-09-17 Online:2010-12-22 Published:2010-12-22

摘要: 虽然支持向量机在高光谱影像分类得到成功应用,但是它自身固有许多不足之处。相关向量机是在贝叶斯框架下提出的更加稀疏的学习机器,它没有规则化系数,其核函数不需要满足Mercer条件,不仅具备良好的泛化能力,而且还能够得到具有统计意义的预测结果。本文从分析支持向量机用于高光谱影像分类存在的不足出发,提出了一种基于相关向量机的高光谱影像分类方法,介绍了稀疏贝叶斯分类模型,将相关向量机学习转化为最大化边缘似然函数估计问题,并采用了快速序列稀疏贝叶斯学习算法。通过PHI和OMIS影像分类实验分析表明了基于相关向量机的高光谱影像分类方法的优越性。

Abstract: Though the support vector machine has been successfully applied in hyperspectral imagery classification, it has also several limitations. Relevance vector machine is a sparse model in the Bayesian framework, its mathematics model doesn’t have regularization coefficient and its kernel functions don’t need to satisfy Mercer's condition. RVM presents the good generalization performance, and its predictions are probabilistic. In this paper, we firstly analysis the disadvantages of the support vector machine for hyperspectral imagery classification, and then a hyperspectral imagery classification method based on the relevance machine is brought forward. We introduce the sparse Bayesian classification model, regard the RVM learning as the maximization of marginal likelihood, and select the fast sequential sparse Bayesian learning algorithm. Through the experiments of OMIS and AVIRIS images, the advantages of the relevance machine used in hyperspectral remote sensing image classification are given out.