摘要: 结合支持向量机技术与基于粗糙集的粒度计算,本文提出了一种新的高分辨率遥感影像面向对象分类方法。首先,采用相位一致模型得到IKONOS全色影像的梯度图,并利用扩展最小变换技术获取感兴趣目标的前景标识,进而采用强制最小技术重建梯度。在此基础上,采用分水岭变换得到较佳分割效果。然后,从多光谱波段数据中提取对象的光谱特征,并用Gabor小波产生纹理特征,利用多核支持向量机进行初步的面向对象分类,对分类结果进行求交后则生成信息颗粒。最后,比较颗粒的特征均值与各样本中心的欧氏距离区分颗粒的类别,通过定量分析颗粒间的空间相邻关系判断未定类别的颗粒,利用少量人工交互的识别处理得到最终分类结果。与基于高斯径向基核函数的支撑向量机和神经网络两种方法进行了对比分析,实验结果表明本文所提方法能够取得更好的分类效果。