测绘学报

• 学术论文 • 上一篇    下一篇

知识引导下的城区LiDAR点云高精度三角网渐进滤波方法

左志权   

  1. 中国测绘科学研究院航测所
  • 收稿日期:2010-12-07 修回日期:2011-10-27 出版日期:2012-04-25 发布日期:2012-04-25
  • 通讯作者: 左志权

A High-quality Filtering Method with Adaptive TIN Models for Urban LiDAR Points Based on Priori-knowledge

  • Received:2010-12-07 Revised:2011-10-27 Online:2012-04-25 Published:2012-04-25

摘要: 针对城区LiDAR点云特点,提出一种基于知识的三角网渐进滤波方法:①对格网内插后的栅格数据进行面向对象分割;②采用迭代Otsu聚类手段对地面对象与非地面对象自动分离;③针对分类结果构建初始三角网,并自适应调整地面点判据参数,达到提高滤波质量目的。选用ALS50系统真实数据进行滤波实验,并与传统方法滤波结果进行精度评价,评价结果表明:基于知识的滤波方法能进一步提高点云滤波质量。

Abstract: According to the characteristics of urban LiDAR point clouds, we proposed a knowledge-based filtering algorithm with adaptive TIN models. The main strategies are: ① taking object-oriented segmentation for raster data interpolated regularly; ② separating terrain objects from off-terrain objects by using iteration Otsu clustering method; ③ constructing the initial TIN form classification results and adjusting the parameters of the ground point criterion adaptively in the aim of improving the filtering quality. We did experiment with the real data of ALS50 system and also assessed the results quality with traditional algorithm. The result shows that knowledge-based filtering method can further improve the quality of point clouds filtering.