›› 2013, Vol. 42 ›› Issue (5): 668-675.

• 学术论文 • 上一篇    下一篇

基于CPU和GPU协同处理的光学卫星遥感影像正射校正方法

方留杨1,王密2,李德仁2   

  1. 1. 武汉大学
    2. 武汉大学测绘遥感信息工程国家重点实验室
  • 收稿日期:2012-08-21 修回日期:2013-01-18 出版日期:2013-10-20 发布日期:2014-01-23
  • 通讯作者: 方留杨 E-mail:fangliuyang@whu.edu.cn
  • 基金资助:
    中央高校基本科研业务费专项资金

A CPU-GPU Co-processing Orthographic Rectification Approach for Optical Satellite Imagery

  • Received:2012-08-21 Revised:2013-01-18 Online:2013-10-20 Published:2014-01-23

摘要: 本文系统地探讨了基于CPU和GPU协同处理的光学卫星遥感影像正射校正方法。首先使用“层次性分块”策略设计了基于CPU和GPU协同处理的正射校正方法,然后通过配置选择优化和存储层次性访问等手段进一步提高了方法执行效率。在Tesla M2050 GPU上对资源三号卫星下视全色影像进行正射校正的实验结果表明,本文方法大幅提高了光学卫星遥感影像正射校正效率,与传统串行正射校正算法相比,加速比最高达到110倍以上,相应的处理时间压缩至5s以内,可满足对大数据量光学卫星遥感影像进行快速正射校正的要求。

关键词: 正射校正, CPU和GPU协同处理, 层次性分块, 配置选择优化, 存储层次性访问

Abstract: A new CPU-GPU co-processing orthographic rectification approach for optical satellite imagery is proposed in this paper. First, “hierarchical tiling” strategy is applied to form the basic algorithm flow; then the algorithm performance is further improved in the respect of configuration optimization and memory hierarchical access. The algorithm is applied to the orthographic rectification of ZY-3 nadir panchromatic imagery and the experimental data is collected. By analyzing the data we find that the processing time of our algorithm on Tesla M2050 GPU is less than 5 seconds and the highest speedup ratio to the traditional serial algorithm is more than 110 times. This result demonstrates that our algorithm significantly improves the orthographic rectification efficiency and fully satisfies the requirement of fast orthographic rectification for large data optical satellite imagery.

Key words: Orthographic Rectification, CPU-GPU Co-processing, Hierarchical Tiling, Configuration Optimization, Memory Hierarchical Access

中图分类号: