测绘学报 ›› 2014, Vol. 43 ›› Issue (2): 151-157.

• 学术论文 • 上一篇    下一篇

基于混合Gamma拖尾Rayleigh分布的高分辨SAR图像建模

王灿,苏卫民,顾红,邵华   

  1. 南京理工大学
  • 收稿日期:2012-10-10 修回日期:2012-12-04 出版日期:2014-02-20 发布日期:2014-02-28
  • 通讯作者: 苏卫民 E-mail:SWM_thesis@163.com
  • 基金资助:

    部预研基金;南京理工大学自主科研专项计划资助项目;江苏省创新计划

SAR Image Modeling Based on the Mixture Gamma Heavy-tailed Rayleigh Distribution

  • Received:2012-10-10 Revised:2012-12-04 Online:2014-02-20 Published:2014-02-28
  • Supported by:

    ;Program granted for scientific innovation research of college graduate in Jangsu province

摘要:

针对已有统计模型无法精确刻画高分辨率SAR(Synthetic Aperture Radar合成孔径雷达)图像的统计特征的问题,本文提出一种基于乘积模型的统计模型称为混合Gamma拖尾Rayleigh分布模型。在该模型中,我们利用拖尾Rayleigh分布对相干斑进行建模,使模型可以精确拟合高分辨率SAR图像相干斑的尖峰和厚尾的特征;同时我们引入混合Gamma分布对高分辨SAR图像RCS(Radar Cross Section雷达散射截面积)复杂起伏特性进行表征。基于梅林变换,我们推导出混合Gamma拖尾Rayleigh分布对数累计量参数估计公式,提高参数估计精度,从而实现对高分辨率SAR图像的精确建模。最后我们通过真实SAR图像对本文提出的模型与已有模型进行比较。试验结果表明,本文提出的模型能够对不同的高分辨率SAR图像进行统计建模,并且具有较高的拟合精度。

关键词: 合成孔径雷达图像, 乘积模型, 拖尾瑞利分布, 混合伽马分布, 梅林变换

Abstract:

Aimed at normal resolution SAR image can't model accurately for the high resolution SAR image,this paper proposes an efficient statistical model, called mixture Gamma heavy-tailed Rayleigh distribution specially for high resolution SAR image. In this model,we model the speckle using the Heavy-tailed Rayleigh density to describe the characteristic of sharp peak and heavy tail of the high resolution SAR image. And we model the RCS by introducing the mixture Gamma density to characterize the complex fluctuation characteristics of the high resolution SAR. Based on the Mellin transformation,we derive mixture Gamma heavy Rayleigh distribution log- cumulant Parameter estimation formula to improve the accuracy of parameter estimation, therefore, to achieve accurate modeling of the high resolution SAR image. Furthermore, experimental results on several actual SAR images are given and we compare our method with some existing methods. Experimental results demonstrate that the modeling proposed in this paper can model for various high resolution SAR images,and it has higher fitting accuracy.

Key words: SAR image, multiplicative model, heavy-tailed Rayleigh distribution, mixture Gamma distribution, Mellin transform

中图分类号: