[1] Ronald Hatch, Han s, Jurgen Euler.: Comparison of Several AROF Kinem atic Techniques[C]//Proceedings of IEEE Symposium on Position,Location and Navigation, 1994, 363-369.
[2] Frei E, Beutler G.: Rapid static positioning based on the fast ambiguity resolution approach “FARA” theory and first results[J]. Manuscripta Geotaetica, 1990.
[3] Teunissen P.: The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation[J]. J Geod, 1995, 70: 65-82.
[4] Teunissen P.: The success rate and precision of GPS ambiguity[J]. J Geod, 2000,74: 321-326.
[5] Teunissen P.: The invertible GPS ambiguity transformation[J]. Manuscr Geod, 1995, 20: 489-497.
[6] Teunissen P , De Jong, Tiberius CC.: The least-squares ambiguity decorrelation adjustment: its performance on short GPS baselines and short observation spans[J]. J Geod, 1997, 71:589-602
[7] De Jonge, Tiberius C: The LAMBDA method for integer ambiguity estimation: implementation aspects[C]. LGR Series, no.12, Delft Geodetic Computing Centre, Delft University of Technology, 1996
[8] Teunissen P.: A new method for fast carrier phase ambiguity estimation[C]// Proceedings of IEEE PLANS’94. Las Vegas, 11-15 1994. 562-573.
[9] ZHOU Yang-mei, LIU Jing-nan, LIU Ji-yu. Return-calculating LAMBDA Approach and Its Search Space [J]. Acta Geodaetica et Cartographica Sinca, 2005, 34(4): 300-304. (周扬眉, 刘经南, 刘基余. 回代解算的LAMBDA 方法及其搜索空间[J]. 测绘学报, 2005, 34(4): 300-304.)
[10] Rizos C, Han S. A new method for constraining multi-satellite ambiguity combinations for improved ambiguity resolution[C]//Proc ION GPS-95, Palm springs, 12-15, 1995. 1145-1153.
[11] Li Z, Gao Y.: A method for construction of high dimension transformation matrices in LAMBDA[J], Geomatica, 1998, 52:433-439.
[12] Liu LT, Hsu HT, Zhu YZ, Ou JK.: A new approach to GPS ambiguity decorrelation[J]. J Geod, 1999, 73:478-490.
[13] Lenstra AK, Lenstra HW, Lovasz L.: Factoring polynomials with retional coefficients[J]. Math Ann, 1982, 261:515-524.
[14] Grafarend E.: Mixed integer-real adjustment(IRA) problems: GPS initial cycle ambiguity resolution by means of the LLL algorithm[J]. GPS Solut, 2000, 4(2):31-44.
[15] Xu P.: Random simulation and GPS decorrelation[J]. J Geod, 2001, 75:408-423.
[16] LIU Zhi-ping, HE Xiu-feng. An improved LLL algorithm for GPS Ambiguity Resolution[J]. Acta Geodaetica et Cartographica Sinca, 2007, 36(3): 286-289. (刘志平,何秀凤. 改进的GPS模糊度降相关LLL算法[J], 测绘学报. 2007, 36(3):286-289.)
[17] YANG Rong-hua, HUA Xiang-hong, LI Zhao, WU Ji-zhong. An Improves LLL Algorithm for GPS Ambiguity Solution[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1):21-24. (杨荣华,花向红,李昭,吴继忠. GPS模糊度降相关LLL算法的一种改进[J]. 武汉大学学报?信息科学版, 35(1):21-24.
[18] ZHANG Xian-da. Matrix Analysis and Applications[M]. Beijing: Tsinghua University Press,2004.(张贤达. 矩阵分析与应用[M].北京:清华大学出版社,2004.)
[19] ZHAO Tao, JIANG Jin-rong. A Block Gram-Schmidt Algorithm with its Application[J]. Journal of the Graduate School of the Academy of Sciences, 2009,26(2):224-228. (赵韬,姜金荣. 分块Gram-Schmidt正交化算法及其应用[J], 中国科学院研究生院学报, 2009,26(2):224-228.)
[20] Jalhy w., Philippe B. Stability analysis and irnprovernent of the block Gram-Schmidt algorithm[J]. SIAM J Sci Statist Comput, 1991, 12:1058-1073
[21] Stathopoulos A, Wu K. A block orthogonalization procedure with constant sysnchronization requirements[J]. SIAM J Sci Statist Comput, 2002, 23:2165-2182
[22] LIU Zhi-ping, HE Xiu-feng, Guo Guang-li, Zha Jian-feng. Decorrelation Algorithms and Its Evaluation Indexes for GNSS Ambiguity Solution[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3):257-261. (刘志平,何秀凤,郭广礼,査剑锋. GNSS降相关算法及其评价性指标研究[J]. 武汉大学学报?信息科学版, 36(3):257-261, 2011.) |