测绘学报 ›› 2014, Vol. 43 ›› Issue (9): 881-887.doi: 10.13485/j.cnki.11-2089.2014.0160

• 学术论文 •    下一篇

重力与磁力测量数据向下延拓中最优正则化参数确定方法研究

刘晓刚1,2,3,李迎春1,3,肖云1,3,翟振和3   

  1. 1. 地理信息工程国家重点实验室
    2. 武汉大学地球空间环境与大地测量教育部重点实验室
    3. 西安测绘研究所
  • 收稿日期:2013-12-24 修回日期:2014-02-07 出版日期:2014-09-20 发布日期:2014-09-25
  • 通讯作者: 刘晓刚 E-mail:liuxiaogang_1949@163.com
  • 基金资助:

    国家自然科学基金;国家973资助项目;地球空间环境和大地测量教育部重点实验室开放基金

Study of Optimal Regularization Parameter Determination Method in Downward Continuation of Gravimetric and Geomagnetic Data

LIU Xiaogang1,2,3,LI Yingchun2,3,XIAO Yun2,3,ZHAI Zhenhe   

  1. 1.Xi’an Research Institute of Surveying and Mapping 2.State Key Laboratory of Geo-Information Engineering 3.Key laboratory of Geo-space Environment and Geodesy of Ministry of Education, Wuhan University
  • Received:2013-12-24 Revised:2014-02-07 Online:2014-09-20 Published:2014-09-25
  • Contact: LIU Xiaogang E-mail:liuxiaogang_1949@163.com

摘要:

向下延拓是重、磁测量数据处理的关键步骤之一,然而,向下延拓是一个典型的不适定问题,需要采用正则化方法实现有效延拓,因此,正则化参数的确定是重、磁测量数据向下延拓正则化方法研究中最重要内容。本文根据观测面和延拓面测量数据的Poisson积分平面近似关系,结合快速傅里叶变换算法,将其转换到频率域进行计算,提高了计算速度,为了克服计算的不稳定性并进一步提高计算结果的精度,引入Landweber正则化迭代法,在此基础上采用L曲线法研究了最优正则化参数的确定,最后采用模型磁测数据验证了所确定的正则化参数的有效性,并取得了较好的延拓结果。

关键词: 向下延拓, 正则化参数, Landweber正则化迭代法, 快速傅里叶变换, L曲线法

Abstract:

 Downward continuation is one of the key steps in the processing of gravimetric and geomagnetic data. However, downward continuation is a typical ill-posed problem, and its computation is unstable. Therefore, the regularization methods are needed in order to realize the effective continuation of gravimetric and geomagnetic data, and the determination of regularization parameter is the most important content in the study of downward continuation by regularization method. According to the Poisson integral plane approximate relationship between observation and continuation data, and combining with Fast Fourier Transform (FFT) algorithm, the computation formulae were transformed to frequency domain so as to accelerate the computational speed. The Landweber regularization iteration method was introduced so that the instability could be overcome and the results precision could be improved, based on that the determination method of optimal regularization parameter in downward continuation was studied by L-curve method. The availability of regularization parameter was validated by simulated geomagnetic data, and continuation results in good precision were also derived.

Key words: downward continuation, regularization parameter, Landweber regularization iteration method, fast fourier transform (FFT), L-curve method