测绘学报 ›› 2015, Vol. 44 ›› Issue (6): 670-677.doi: 10.11947/j.AGCS.2015.20140404

• 摄影测量学与遥感 • 上一篇    下一篇

复杂水体边界提取的改进正交T-Snake模型

孟令奎, 吕琪菲   

  1. 武汉大学遥感信息工程学院, 湖北 武汉 430079
  • 收稿日期:2014-08-12 修回日期:2014-12-25 出版日期:2015-06-20 发布日期:2015-07-28
  • 通讯作者: 吕琪菲 E-mail: lvqifei@whu.edu.cn E-mail:lvqifei@whu.edu.cn
  • 作者简介:孟令奎(1967—),男,博士后,教授,博士生导师,研究方向为网络GIS和遥感应用。E-mail: lkmeng@whu.edu.cn
  • 基金资助:

    高分辨率对地观测系统重大专项(08-Y30B07-9001-13/15)

Improved Orthogonal T-Snake Model for Complex Water Boundary Extraction

MENG Lingkui, LÜ Qifei   

  1. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
  • Received:2014-08-12 Revised:2014-12-25 Online:2015-06-20 Published:2015-07-28
  • Supported by:

    Major Project of High-resolution Earth Observing System(No.08-Y30B07-9001-13/15)

摘要:

引入拓扑自适应动态轮廓(T-Snake)模型并进行了改进,设计了合适的能量函数,提出了目标内部岛状空洞引起的拓扑冲突的检测与处理机制,实现了包含河中岛的复杂河流边界的精确提取。针对模型初始轮廓需手动构造的缺点,利用影像分形维数最小值获取水体内部区域并实现轮廓自动初始化。试验表明,该方法可有效提取水体深凹边界和含河中岛的河流边界,在精度和效率上优于传统Snake和GVF Snake模型。

关键词: 拓扑自适应动态轮廓(T-Snake)模型, 河中岛, 初始轮廓, 分形维数, 边界提取

Abstract:

A topology adaptive snake (T-Snake) model based on orthogonal grids is introduced and improved in this paper, and a proper energy function is designed. A detection and handling mechanism for topological conflict that caused by island shaped hollow is proposed in the model, and therefore accurate extraction for complex boundary of river containing river islands is achieved. For the disadvantage of the need to manually construct the initial contour in the orthogonal T-Snake model, using the minimum fractal dimension to obtain one area of the water and automatically generate an initial contour. The experiment shows that the algorithm of this paper can accurately extract the boundary of the complex water which contains deeply concave regions or river islands, and it has higher accuracy and less time cost than classic Snake model and GVF Snake model.

Key words: topology adaptive snake (T-Snake), river island, initial contour, fractal dimension, boundary extraction

中图分类号: