[1] TEUNISSEN P J G. The Least-squares Ambiguity Decorrelation Adjustment: A Method for Fast GPS Integer Ambiguity Estimation[J]. Journal of Geodesy, 1995, 70(1-2): 65-82. [2] LIU L T, HSU H T, ZHU Y Z, et al. A New Approach to GPS Ambiguity Decorrelation[J]. Journal of Geodesy, 1999, 73(9): 478-490. [3] XU Peiliang. Random Simulation and GPS Decorrelation[J]. Journal of Geodesy, 2001, 75(7-8): 408-423. [4] XU Peiliang. Parallel Cholesky-based Reduction for the Weighted Integer Least Squares Problem[J]. Journal of Geodesy, 2012, 86(1): 35-52. [5] ZHOU Yangmei. A New Practical Approach to GNSS High-dimensional Ambiguity Decorrelation[J]. GPS Solutions, 2011, 15(4): 325-331. [6] 周扬眉, 刘经南, 刘基余. 回代解算的LAMBDA方法及其搜索空间[J]. 测绘学报, 2005, 34(4): 300-304. ZHOU Yangmei, LIU Jingnan, LIU Jiyu. Return-calculating LAMBDA Approach and Its Search Space[J]. Acta Geodaetica et Cartographica Sinica, 2005, 34(4): 300-304. [7] 刘宁, 熊永良, 冯威, 等. 单频GPS动态定位中整周模糊度的一种快速解算方法[J]. 测绘学报, 2013, 42(2): 211-217. LIU Ning, XIONG Yongliang, FENG Wei, et al. An Algorithm for Rapid Integer Ambiguity Resolution in Single Frequency GPS Kinematical Positioning[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(2): 211-217. [8] 卢立果, 刘万科, 于兴旺. 基于交叉排序算法解算模糊度的新规约方法[C]//第五届中国卫星导航学术年会电子文集. 南京: [s.n.], 2014. LU Liguo, LIU Wanke, YU Xingwang. A New Reduction Method for Ambiguity Resolution Based on Cross Sorting Algorithm[C]//The Fifth China Satellite Navigation Conference (CSNC). Nanjing: [s.n.], 2014. [9] 于兴旺. 多频GNSS精密定位理论与方法研究[D]. 武汉: 武汉大学, 2011. YU Xingwang. Multi-frequency GNSS Precise Positioning Theory and Method Research[D]. Wuhan: Wuhan University, 2011. [10] JAZAERI S, AMIRI-SIMKOOEI A R, SHARIFI M A. Fast Integer Least-squares Estimation for GNSS High Dimensional Ambiguity Resolution Using the Lattice Theory[J]. Journal of Geodesy, 2012, 86(2): 123-136. [11] HASSIBI A, BOYD S. Integer Parameter Estimation in Linear Models with Applications to GPS[J]. IEEE Transactions on Signal Processing, 1998, 46(11): 2938-2952. [12] 刘志平, 何秀凤. 改进的GPS模糊度降相关LLL算法[J]. 测绘学报, 2007, 36(3): 286-289. LIU Zhiping, HE Xiufeng. An Improved LLL Algorithm for GPS Ambiguity Solution[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(3): 286-289. [13] 杨荣华, 花向红, 李昭, 等. GPS模糊度降相关LLL算法的一种改进[J]. 武汉大学学报(信息科学版), 2010, 35(1): 21-24. YANG Ronghua, HUA Xianghong, LI Zhao, et al. An Improved LLL Algorithm for GPS Ambiguity Solution[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 21-24. [14] 谢恺, 柴洪洲, 范龙, 等. 一种改进的LLL模糊度降相关算法[J]. 武汉大学学报(信息科学版), 2014, 39(11): 1363-1368. XIE Kai, CHAI Hongzhou, FAN Long, et al. An Improved LLL Ambiguity Decorrelation Algorithm[J]. Geomatics and Information Science of Wuhan University, 2014, 39(11): 1363-1368. [15] 刘经南, 于兴旺, 张小红. 基于格论的GNSS模糊度解算[J]. 测绘学报, 2012, 41(5): 636-645. LIU Jingnan, YU Xingwang, ZHANG Xiaohong. GNSS Ambiguity Resolution Using Lattice Theory[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(5): 636-645. [16] 卢立果. 基于球形搜索的模糊度格基规约方法研究与分析[D]. 武汉: 武汉大学, 2013. LU Liguo. The Research and Analysis Based on Sphere Search for Ambiguity on Reduction[D]. Wuhan: Wuhan University, 2013. [17] LANNES A. On the Theoretical Link between LLL-reduction and LAMBDA-decorrelation[J]. Journal of Geodesy, 2013, 87(4): 323-335. [18] LEICA A, RAPOPORT L, TATARNIKOV D. GPS Satellite Surveying[M]. 4th ed. New York: Wiley, 2015: 324-356. [19] BORNO M A, CHANG X W, XIE X H. On “Decorrelation” in Solving Integer Least-squares Problems for Ambiguity Determination[J]. Survey Review, 2014, 46(334): 37-49. [20] 卢立果, 刘万科, 李江卫. 降相关对模糊度解算中搜索效率的影响分析[J]. 测绘学报, 2015, 44(5): 481-487. DOI: 10.11947/j.AGCS.2015.20140311. LU Liguo, LIU Wanke, LI Jiangwei. Impact of Decorrelation on Search Efficiency of Ambiguity Resolution[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(5): 481-487. DOI: 10.11947/j.AGCS.2015.20140311. [21] CHANG X W, YANG X, ZHOU T. MLAMBDA: A Modified LAMBDA Method for Integer Least-squares Estimation[J]. Journal of Geodesy, 2005, 79(9): 552-565. [22] TEUNISSEN P J G, ODOLINSKI R, ODIJK D. Instantaneous BeiDou+GPS RTK Positioning with High Cut-off Elevation Angles[J]. Journal of Geodesy, 2014, 88(4): 335-350. [23] KOY H, SCHNORR C P. Segment LLL-reduction of Lattice Bases[M]//SILVERMAN J H. Cryptography and Lattices, Lecture Notes in Computer Sciences. Berlin: Springer, 2001, 2146: 67-80. [24] KOY H, SCHNORR C P. Segment LLL-reduction with Floating Point Orthogonalization[M]//SILVERMAN J H. Cryptography and Lattices, Lecture Notes in Computer Sciences. Berlin: Springer, 2001, 2146: 81-96. [25] 范龙, 翟国君, 柴洪洲. 模糊度降相关的整数分块正交化算法[J]. 测绘学报, 2014, 43(8): 818-826. DOI: 10.13485/j.cnki.11-2089.2014.0094. FAN Long, ZHAI Guojun, CHAI Hongzhou. Ambiguity Decorrelation Algorithm with Integer Block Orthogonalization Algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(8): 818-826. DOI: 10.13485/j.cnki.11-2089.2014.0094. [26] LENSTRA A K, LENSTRA H W, LOVASZ L. Factoring Polynomials with Rational Coefficients[J]. Mathematische Annalen, 1982, 261(4): 515-534. [27] LUK F T, TRACY D M. An Improved LLL Algorithm[J]. Linear Algebra and Its Applications, 2007, 428(2-3): 441-452. [28] NGUYEN P Q, VALLEE B. The LLL Algorithm: Survey and Applications (Information Security and Cryptography) [M]. Paris: Springer, 2010: 145-178. [29] ODIJK D, TEUNISSEN P J G. ADOP in Closed form for a Hierarchy of Multi-frequency Single-Baseline GNSS Models[J]. Journal of Geodesy, 2008, 82(8): 473-492. [30] TEUNISSEN P J G, ODIJK D. Ambiguity Dilution of Precision: Definition, Properties and Application[C]//Proceedings of ION GPS-97. Kansas City: [s.n.], 1997: 891-899. [31] VERHAGEN S. On the Approximation of the Integer Least-squares Success Rate: Which Lower or Upper Bound to Use?[J]. Journal of Global Positioning Systems, 2003, 2(2): 117-124. [32] FENG Yanming, WANG Jun. Computed Success Rates of Various Carrier Phase Integer Estimation Solutions and Their Comparison with Statistical Success Rates[J]. Journal of Geodesy, 2011, 85(2): 93-103. [33] VERHAGEN S, LI Bofeng, TEUNISSEN P J G. Ps-LAMBDA: Ambiguity Success Rate Evaluation Software for Interferometric Applications[J]. Computers & Geosciences, 2013, 54: 361-376. [34] TEUNISSEN P J G. Success Probability of Integer GPS Ambiguity Rounding and Bootstrapping[J]. Journal of Geodesy, 1998, 72(10): 606-612. |