[1] SUMNALL M J, FOX T R, WYNNE R H, et al. Estimating Leaf Area Index at Multiple Heights within the Understory Component of Loblolly Pine Forests from Airborne Discrete-return LiDAR[J]. International Journal of remote Sensing, 2016, 37(1):78-99. [2] BRÉDA N J J. Ground-based Measurements of Leaf Area Index:A Review of Methods, Instruments and Current Controversies[J]. Journal of Experimental Botany, 2003, 54(392):2403-2417. [3] GATZIOLIS D. Dynamic Range-Based Intensity Normalization for Airborne, Discrete Return LiDAR Data of Forest Canopies[J]. Photogrammetric Engineering & Remote Sensing, 2011, 77(3):251-259. [4] CHEN J M, BLACK T A. Measuring Leaf Area Index of Plant Canopies with Branch Architecture[J]. Agricultural and Forest Meteorology, 1991, 57(1-3):1-12. [5] CHEN J M, PAVLIC G, BROWN L, et al. Derivation and Validation of Canada-wide Coarse-resolution Leaf Area Index Maps Using High-resolution Satellite Imagery and Ground Measurements[J]. Remote Sensing of Environment, 2002, 80(1):165-184. [6] 尤号田, 邢艳秋, 王铮, 等. 利用LiDAR离散点云估测针叶林叶面积指数[J]. 西北林学院学报, 2014, 29(3):41-47. YOU Haotian, XING Yanqiu, WANG Zheng, et al. Estimation of the Leaf Area Index of Coniferous Forests Using LiDAR Discrete Point Cloud[J]. Journal of Northwest Forestry University, 2014, 29(3):41-47. [7] WOODGATE W, DISNEY M, ARMSTON J D, et al. An Improved Theoretical Model of Canopy Gap Probability for Leaf Area Index Estimation in Woody Ecosystems[J]. Forest Ecology and Management, 2015, 358:303-320. [8] FINNEY M A. FARSITE:Fire Area Simulator-model Development and Evaluation[R]. RMRS-RP-4, USDA Forest Service, 1998. [9] MORSDORF F, KÖTZ B, MEIER E, et al. Estimation of LAI and Fractional Cover from Small Footprint Airborne Laser Scanning Data Based on Gap Fraction[J]. Remote Sensing of Environment, 2006, 104(1):50-61. [10] WANG Cheng, GLENN N F. Integrating LiDAR Intensity and Elevation Data for Terrain Characterization in A Forested Area[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3):463-466. [11] KIM S, MCGAUGHEY R J, ANDERSEN H E, et al. Tree Species Differentiation Using Intensity Data Derived from Leaf-on and Leaf-off Airborne Laser Scanner Data[J]. Remote Sensing of Environment, 2009, 113(8):1575-1586. [12] HOPKINSON C, CHASMER L. Testing LiDAR Models of Fractional Cover Across Multiple Forest Ecozones[J]. Remote Sensing of Environment, 2009, 113(1):275-288. [13] ZHAO Kaiguang, POPESCU S. LiDAR-based Mapping of Leaf Area Index and Its Use for Validating GLOBCARBON Satellite LAI Product in a Temperate Forest of the Southern USA[J]. Remote Sensing of Environment, 2009, 113(8):1628-1645. [14] 尤号田, 邢艳秋, 冉慧, 等. 基于LiDAR点云能量信息的樟子松郁闭度反演方法[J]. 北京林业大学学报, 2014, 36(6):30-35. YOU Haotian, XING Yanqiu, RAN Hui, et al. Inversion Method for the Crown Density of Mongolian Scotch Pine from Point Cloud Data of Small-footprint LiDAR[J]. Journal of Beijing Forestry University, 2014, 36(6):30-35. [15] LOVELL J L, JUPP D L B, CULVENOR D S, et al. Using Airborne and Ground-based Ranging LiDAR to Measure Canopy Structure in Australian Forests[J]. Canadian Journal of Remote Sensing, 2003, 29(5):607-622. [16] SOLBERG S. Comparing Discrete Echoes Counts and Intensity Sums from ALS for Estimating Forest LAI and Gap Fraction[C]//Proceedings of the SilviLaser 2008:the 8th International Conference on LiDAR Applications in Forest Assessment and Inventory. Edinburgh:Heriot-Watt University, 2008:301-304. [17] GARCÍA M, RIAÑO D, CHUVIECO E, et al. Estimating Biomass Carbon Stocks for a Mediterranean Forest in Central Spain Using LiDAR Height and Intensity Data[J]. Remote Sensing of Environment, 2010, 114(4):816-830. [18] HEISKANEN J, KORHONEN L, HIETANEN J, et al. Use of Airborne LiDAR for Estimating Canopy Gap Fraction and Leaf Area Index of Tropical Montane Forests[J]. International Journal of Remote Sensing, 2015, 36(10):2569-2583. [19] 邢艳秋, 霍达, 尤号田, 等. 基于机载LiDAR单束激光穿透指数的白桦林LAI估测[J]. 应用生态学报, 2016, 27(11):3469-3478. XING Yanqiu, HUO Da, YOU Haotian, et al. Estimation of Birch Forest LAI Based on Single Laser Penetration Index of Airborne LiDAR Data[J]. Chinese Journal of Applied Ecology, 2016, 27(11):3469-3478. [20] 骆社周, 王成, 张贵宾, 等. 机载激光雷达森林叶面积指数反演研究[J]. 地球物理学报, 2013, 56(5):1467-1475. LUO Shezhou, WANG Cheng, ZHANG Guibin, et al. Forest Leaf Area Index (LAI) Inversion Using Airborne LiDAR Data[J]. Chinese Journal of Geophysics, 2013, 56(5):1467-1475. [21] SONG C. Estimating Tree Crown Size with Spatial Information of High Resolution Optical Remotely Sensed Imagery[J]. International Journal of Remote Sensing, 2007, 28(15):3305-3322. [22] MEANS J E, ACKER S A, HARDING D J, et al. Use of Large-footprint Scanning Airborne LiDAR to Estimate Forest Stand Characteristics in the Western Cascades of Oregon[J]. Remote Sensing of Environment, 1999, 67(3):298-308. [23] JELALIAN A V. Laser Radar Systems[M]. Boston:Artech House, 1992:3-10. [24] JUTZI B, STILLA U. Range Determination with Waveform Recording Laser Systems Using a Wiener Filter[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 61(2):95-107. [25] HÖFLE B, PFEIFER N. Correction of Laser Scanning Intensity Data:Data and Model-driven Approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(6):415-433. [26] RONCAT A, BERGAUER G, PFEIFER N. B-spline Deconvolution for Differential Target Cross-section Determination in Full-waveform Laser Scanning Data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(4):418-428. [27] YAN W Y, SHAKER A. Radiometric Correction and Normalization of Airborne LiDAR Intensity Data for Improving Land-cover Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(12):7658-7673. [28] KORPELA I, ØRKA H O, HYYPPÄ J, et al. Range and AGC Normalization in Airborne Discrete-return LiDAR Intensity Data for Forest Canopies[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65(4):369-379. [29] KAASALAINEN S, JAAKKOLA A, KAASALAINEN M, et al. Analysis of Incidence Angle and Distance Effects on Terrestrial Laser Scanner Intensity:Search for Correction Methods[J]. Remote Sensing, 2011, 3(10):2207-2221. [30] COREN F, STERZAI P. Radiometric Correction in Laser Scanning[J]. International Journal of Remote Sensing, 2006, 27(15):3097-3104. [31] KUKKO A, KAASALAINEN S, LITKEY P. Effect of Incidence Angle on Laser Scanner Intensity and Surface Data[J]. Applied Optics, 2008, 47(7):986-992. [32] MORSDORF F, FREY O, MEIER E, et al. Assessment of the Influence of Flying Altitude and Scan Angle on Biophysical Vegetation Products Derived from Airborne Laser Scanning[J]. International Journal of Remote Sensing, 2008, 29(5):1387-1406. [33] HALL S A, BURKE I C, BOX D O, et al. Estimating Stand Structure Using Discrete-return LiDAR:An Example from Low Density, Fire Prone Ponderosa Pine Forests[J]. Forest Ecology and Management, 2005, 208(1-3):189-209. [34] JENSEN J L R, HUMES K S, VIERLING L A, et al. Discrete Return LiDAR-based Prediction of Leaf Area Index in Two Conifer Forests[J]. Remote Sensing of Environment, 2008, 112(10):3947-3957. [35] PEDUZZI A, WYNNE R H, FOX T R, et al. Estimating Leaf Area Index in Intensively Managed Pine Plantations Using Airborne Laser Scanner Data[J]. Forest Ecology and Management, 2012, 270:54-65. [36] HOPKINSON C. The Influence of Flying Altitude, Beam Divergence, and Pulse Repetition Frequency on Laser Pulse Return Intensity and Canopy Frequency Distribution[J]. Canadian Journal of Remote Sensing, 2007, 33(4):312-324. |