测绘学报 ›› 2018, Vol. 47 ›› Issue (2): 198-207.doi: 10.11947/j.AGCS.2018.20170512

• • 上一篇    下一篇

机载多光谱LiDAR数据的地物分类方法

潘锁艳, 管海燕   

  1. 南京信息工程大学遥感与测绘工程学院, 江苏 南京 210044
  • 收稿日期:2017-09-11 修回日期:2017-12-04 出版日期:2018-02-20 发布日期:2018-03-02
  • 通讯作者: 管海燕 E-mail:guanhy.nj@nuist.edu.cn
  • 作者简介:潘锁艳(1995-),女,硕士生,研究方向为机载激光雷达数据处理。E-mail:pansy_nuist@163.com
  • 基金资助:
    国家自然科学基金(41671454)

Object Classification Using Airborne Multispectral LiDAR Data

PAN Suoyan, GUAN Haiyan   

  1. School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
  • Received:2017-09-11 Revised:2017-12-04 Online:2018-02-20 Published:2018-03-02
  • Supported by:
    The National Natural Science Foundation of China (No. 41671454)

摘要: 机载多光谱LiDAR系统能够快速地获取大范围地表面上地物光谱和几何数据,并能够保证所获取的光谱与空间几何数据在空间和时间上相对完整和一致性。支持向量机(SVM)是一种基于小样本的学习方法,它避开了从归纳到演绎的传统分类过程。因此,本文提出了基于SVM多光谱LiDAR数据的地物目标分类方法。该方法首先将多个独立波段的LiDAR数据融合为单一的、包含多个波段信息的点云数据,然后将融合后的点云内插为距离影像和多光谱影像,最后利用SVM进行多光谱LiDAR数据的地物覆盖分类。通过对加拿大Optech公司的Titan机载多光谱LiDAR数据的试验证明:相对于传统的单波段LiDAR数据,多光谱LiDAR数据可以获得较好的地物分类精度;比较试验发现SVM分类方法适用于多光谱LiDAR数据的地物分类。

关键词: 多光谱LiDAR, SVM, 地物分类, 多光谱LiDAR植被指数

Abstract: Airborne multispectral LiDAR system,which obtains surface geometry and spectral data of objects,simultaneously,has become a fast effective,large-scale spatial data acquisition method.Multispectral LiDAR data are characteristics of completeness and consistency of spectrum and spatial geometric information.Support vector machine (SVM),a machine learning method,is capable of classifying objects based on small samples.Therefore,by means of SVM,this paper performs land cover classification using multispectral LiDAR data. First,all independent point cloud with different wavelengths are merged into a single point cloud,where each pixel contains the three-wavelength spectral information.Next,the merged point cloud is converted into range and intensity images.Finally,land-cover classification is performed by means of SVM.All experiments were conducted on the Optech Titan multispectral LiDAR data,containing three individual point cloud collected by 532 nm,1024 nm,and 1550 nm laser beams.Experimental results demonstrate that ①compared to traditional single-wavelength LiDAR data,multispectral LiDAR data provide a promising solution to land use and land cover applications;②SVM is a feasible method for land cover classification of multispectral LiDAR data.

Key words: multispectral LiDAR, SVM, land-cover classification, multispectral lidar-based vegetation indices

中图分类号: