测绘学报 ›› 2018, Vol. 47 ›› Issue (7): 1018-1025.doi: 10.11947/j.AGCS.2018.20170374

• 地图学与地理信息 • 上一篇    下一篇

平面四孔六边形格网系统编码运算

王蕊1, 贲进1, 杜灵瑀1, 周建彬1, 李祝鑫2   

  1. 1. 信息工程大学地理空间信息学院, 河南 郑州 450001;
    2. 61287部队, 四川 成都 610000
  • 收稿日期:2017-06-30 修回日期:2018-03-23 出版日期:2018-07-20 发布日期:2018-07-25
  • 通讯作者: 贲进 E-mail:benj@lreis.ac.cn
  • 作者简介:王蕊(1995-),女,硕士生,研究方向为空间数据模型。E-mail:wr_paper@126.com
  • 基金资助:
    国家重点研发计划(2018YFB0505301);国家自然科学基金(41671410)

Encoding and Operation for the Planar Aperture 4 Hexagon Grid System

WANG Rui1, BEN Jin1, DU Lingyu1, ZHOU Jianbin1, LI Zhuxin2   

  1. 1. Institute of Surveying and Mapping, Information Engineering University, Zhengzhou 450001, China;
    2. Troops 61287, Chengdu 610000, China
  • Received:2017-06-30 Revised:2018-03-23 Online:2018-07-20 Published:2018-07-25
  • Supported by:
    The National Key Research and Development Program of China (2018YFB0505301);The National Natural Science Foundation of China (No. 41671410)

摘要: 全球离散格网系统是支持多源地球空间信息融合处理的新型数据模型。六边形格网系统具有优良的几何属性,相关研究已引起学术界的关注,单元层次关系描述与编码方案设计是其研究难点。本文根据平面四孔六边形格网系统结构特点,设计“格点四叉树”层次编码结构,定义编码运算并归纳运算规律,据此实现二维直角坐标与单元编码的相互转换。与同类成果相比,格点四叉树从原理上克服了奇(偶)分层编码、单元中心与顶点混合编码导致的诸多缺陷,且编码运算规律简明,易于算法实现。试验结果表明,格点四叉树编码加法运算的效率约是PYXIS的6倍、HQBS的5倍;直角坐标转换到编码的效率约为HQBS的5倍,编码转换到直角坐标的效率约为HQBS的3倍。

关键词: 全球离散格网系统, 六边形, 单元编码, 坐标, 转换

Abstract: Discrete global grid system is a new data model which supports the fusion processing of multi-source geospatial information.Research into hexagon grid systems that have excellent geometric attributes has raised academic concern.Description of hierarchical relation and design of encoding scheme are research difficulties.According to the characteristics of the planar aperture 4 hexagon grid system, this paper designs an encoding scheme named Hexagon Lattice Quad Tree (HLQT).Code operations are defined, rules of them are generalized and based on these, transformation between 2-dimensional coordinates and addressing codes is implemented.Compared with similar schemes, HLQT overcomes the disadvantages caught by encoding schemes which divide the odd and even levels or mix the vertices and centers for encoding.In addition, operation rules of HLQT are simpler and easier for complementation.Contrast experiments show that the add operation efficiency of HLQT is about 6 times that of PYXIS and about 5 times that of HQBS, the efficiency of the transform algorithm from 2-dimensional coordinates to codes is about 5 times that of HQBS, and the efficiency of the transform algorithm from codes to 2-dimensional coordinates is about 3 times that of HQBS.

Key words: discrete global grid system, hexagon, addressing code, coordinate, transform

中图分类号: