测绘学报 ›› 2019, Vol. 48 ›› Issue (11): 1391-1403.doi: 10.11947/j.AGCS.2019.20190011

• 地图学与地理信息 • 上一篇    下一篇

车辆轨迹数据提取道路交叉口特征的决策树模型

万子健1, 李连营1, 杨敏1, 周校东2   

  1. 1. 武汉大学资源与环境科学学院, 湖北 武汉 430072;
    2. 地理信息工程国家重点实验室, 陕西 西安 710054
  • 收稿日期:2019-01-04 修回日期:2019-05-26 出版日期:2019-11-20 发布日期:2019-11-19
  • 通讯作者: 杨敏 E-mail:yangmin2003@whu.edu.cn
  • 作者简介:万子健(1997-),男,研究方向为空间数据匹配集成及更新。E-mail:zijwanim@gmail.com
  • 基金资助:
    国家自然科学基金(41871377);国家重点研发计划(2017YFB0503500);国家自然科学基金联合基金(U1764262)

Decision tree model for extracting road intersection feature from vehicle trajectory data

WAN Zijian1, LI Lianying1, YANG Min1, ZHOU Xiaodong2   

  1. 1. School of Resource and Environmental Sciences, Wuhan University, Wuhan 430072, China;
    2. State Key Laboratory of Geo-information Engineering, Xi'an 710054, China
  • Received:2019-01-04 Revised:2019-05-26 Online:2019-11-20 Published:2019-11-19
  • Supported by:
    The National Natural Science Foundation of China (No. 41871377);The National Key Research and Development Program of China (No. 2017YFB0503500);The Joint Funds of the National Natural Science Foundation of China(No. U1764262)

摘要: 众源车辆轨迹数据隐含最新的道路分布信息,研究利用轨迹数据提取道路特征有益于基础路网数据的快速建库与更新。道路网由交叉口和连接交叉口的道路线构成,其中交叉口特征识别是整个道路网生成的关键。由于缺乏精细的交叉口识别模型,轨迹数据生成的道路网容易出现路口遗漏、结构失真等现象。针对这一问题,本文提出一种利用轨迹数据提取道路交叉口的方法。首先,分析车辆在交叉口与非交叉口区域移动轨迹几何形态及隐含动力学特征的变化情形;然后,利用决策树方法构建轨迹片段分类模型,并结合移动开窗式的轨迹线剖分模型建立交叉口区域变道轨迹片段提取方法;最后,依据Hausdorff距离对交叉口区域轨迹片段进行聚类,并提取中心线获得完整的道路交叉口结构。采用真实的车辆轨迹线作为测试数据,验证了本文提出方法的有效性。

关键词: 车辆轨迹数据, 道路网, 交叉口识别, 决策树

Abstract: Crowd sourcing vehicle trajectory data imply the latest road network information. Therefore, studies on the extraction of road features from trajectory data provide the opportunity for efficient construction and renewal of road datasets. Since a road network is composed of road intersections and road segments, the extraction of road intersections plays an important role in road network generation. Due to the lack of accurate mechanisms for intersection extraction, problems such as omission and distortion of road intersections occur frequently. A method is proposed to identify and extract road intersections from vehicle trajectory data. Firstly, it is analyzed that the differences in shape and kinetic features between trajectories from intersection areas and non-intersection areas. Secondly, the decision tree method is employed to construct a trajectory segment classification model, which enables the extraction of lane-changing segments in intersection areas with the support of trajectory division model using a sliding window strategy. Thirdly, a method that based on Hausdorff distance is designed to cluster trajectory segments in intersection areas, and intersection structures are obtained by extracting the central lines of the trajectory segment clusters. Experiments on real-life trajectory datasets were implemented and results showed the effectiveness of the proposed method.

Key words: vehicle trajectory data, road network, road intersection extraction, decision tree

中图分类号: