[1] HATCH R. The synergism of GPS code and carrier measurements[C]//Proceedings of the 3rd International Geodetic Symposium on Satellite Doppler Positioning. Las Cruces, NM:New Mexico State University, 1982:1213-1232. [2] PARK B, SOHN K, KEE C. Optimal Hatch filter with an adaptive smoothing window width[J]. The Journal of Navigation, 2008, 61(3):435-454. [3] KIM E, WALTER T, POWELL J D. Adaptive carrier smoothing using code and carrier divergence[C]//Proceedings of 2007 International Technical Meeting of the Institute of Navigation. San Diego, CA:ION, 2007. [4] 徐博, 刘文祥, 廖鸣. 一种基于电离层变化率的单频载波相位平滑伪距改进方法[J]. 中南大学学报(自然科学版), 2014, 45(2):464-467. XU Bo, LIU Wenxiang, LIAO Ming. An improved method of single frequency carrier phase smoothing pseudo[J]. Journal of Central South University (Science and Technology), 2014, 45(2):464-467. [5] 赵琳, 李亮, 黄卫权. 自适应卡尔曼滤波在载波相位平滑伪距中的应用[J]. 哈尔滨工程大学学报, 2010, 31(12):1636-1641. ZHAO Lin, LI Liang, HUANG Weiquan. An adaptive Kalman filtering algorithm for carrier smoothed code[J]. Journal of Harbin Engineering University, 2010, 31(12):1636-1641. [6] WALTER T, DATTA-BARUA S, BLANCH J, et al. The effects of large ionospheric gradients on single frequency airborne smoothing filters for WAAS and LAAS[C]//Proceedings of 2004 International Technical Meeting of the Institute of Navigation. San Diego, CA:ION, 2004:103-109. [7] LUO Ming, PULLEN S, DENNIS J, et al. LAAS ionosphere spatial gradient threat model and impact of LGF and airborne monitoring[C]//Proceedings of 2003 ION GPS/GNSS. Portland, OR:ION, 2003. [8] HUANG Zhenggang, HUANG Zhigang, ZHU Yanbo. A new optimal Hatch filter to minimize the effects of ionosphere gradients for GBAS[J]. Chinese Journal of Aeronautics, 2008, 21(6):526-532. [9] ZHANG Xiao, HUANG Pan. Optimal Hatch filter with an adaptive smoothing time based on SBAS[C]//Proceedings of the 2nd International Conference on Soft Computing in Information Communication Technology. Taipei, China:Atlantis Press, 2014. [10] KONNO H. Dual-frequency smoothing for CAT Ⅲ LAAS:performance assessment considering ionosphere anomalies[C]//Proceedings of the 20th International Technical Meeting of the Satellite Division of the Institute of Navigation. Forth Worth, TX:ION, 2007. [11] MCGRAW G. Generalized divergence-free carrier smoothing with applications to dual frequency differential GPS[J]. Navigation, 2009, 56(2):115-122. [12] HWANG P Y, MCGRAW G A, BADER J R. Enhanced differential GPS carrier-smoothed code processing using dual-frequency measurements[J]. Navigation, 1999, 46(2):127-137. [13] 邝英才, 吕志平, 李林阳, 等. GPS/BDS/Galileo相位平滑伪距单点定位性能分析[J]. 导航定位学报, 2018, 6(2):68-76. KUANG Yingcai, LÜ Zhiping, LI Linyang, et al. Performance analysis of GPS/BDS/Galileo phase-smoothed pseudorange point positioning[J]. Journal of Navigation and Positioning, 2018, 6(2):68-76. [14] 吴富梅, 唐颖哲. 基于载波相位平滑伪距技术的GPS/INS组合导航[J]. 大地测量与地球动力学, 2010, 30(1):130-135. WU Fumei, TANG Yingzhe. GPS/INS integrated navigation based on phase smoothing pseudorange[J]. Journal of Geodesy and Geodynamics, 2010, 30(1):130-135. [15] RADICELLA S M, NAVA B. NeQuick model:origin and evolution[C]//Proceedings of the 9th International Symposium on Antennas, Propagation and EM Theory. Guangzhou, China:IEEE, 2010:422-425. [16] 方涵先, 翁利斌, 杨升高. IRI、NeQuick和Klobuchar模式比较研究[J]. 地球物理学进展, 2012, 27(1):1-7. FANG Hanxian, WENG Libin, YANG Shenggao, et al. The research of IRI、NeQuick and Klobuchar models[J]. Progress in Geophysics, 2012, 27(1):1-7. [17] KLOBUCHAR J A. Ionospheric time-delay algorithm for single-frequency GPS users[J]. IEEE Transactions on Aerospace and Electronic Systems, 1987, AES-23(3):325-331. [18] 李子申, 王宁波, 李敏, 等. 国际GNSS服务组织全球电离层TEC格网精度评估与分析[J]. 地球物理学报, 2017, 60(10):3718-3729. LI Zishen, WANG Ningbo, LI Min, et al. Evaluation and analysis of the global ionospheric TEC map in the frame of international GNSS services[J]. Chinese Journal of Geophysics, 2017, 60(10):3718-3729. [19] 袁运斌, 霍星亮, 张宝成. 近年来我国GNSS电离层延迟精确建模及修正研究进展[J]. 测绘学报, 2017, 46(10):1364-1378. DOI:10.11947/j.AGCS.2017.20170349. YUAN Yunbin, HUO Xingliang, ZHANG Baocheng. Research progress of precise models and correction for GNSS ionospheric delay in China over recent years[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1364-1378. DOI:10.11947/j.AGCS.2017.20170349. [20] 刘西风. 电离层二阶项延迟及其对GNSS定位结果影响的研究[D]. 武汉:中国科学院测量与地球物理研究所, 2009. LIU Xifeng. Study of second order ionospheric delay and its effect on GNSS positioning solution[D]. Wuhan:Institute of Geodesy and Geophysics, Chinese Academy of Sciences, 2009. [21] 常青, 张东和, 萧佐, 等. GPS系统硬件延迟估计方法及其在TEC计算中的应用[J]. 地球物理学报, 2001, 44(5):596-601. CHANG Qing, ZHANG Donghe, XIAO Zuo, et al. A method for estimating GPS instrumental biases and its application in TEC calculation[J]. Chinese Journal of Geophysics, 2001, 44(5):596-601. [22] 宋小勇, 杨志强, 焦文海, 等. GPS接收机码间偏差(DCB)的确定[J]. 大地测量与地球动力学, 2009, 29(1):127-131. SONG Xiaoyong, YANG Zhiqiang, JIAO Wenhai, et al. Determination of GPS receiver's DCB[J]. Journal of Geodesy and Geodynamics, 2009, 29(1):127-131. [23] 张宝成, 袁运斌, 欧吉坤. GPS接收机仪器偏差的短期时变特征提取与建模[J]. 地球物理学报, 2016, 59(1):101-115. ZHANG Baocheng, YUAN Yunbin, OU Jikun. Short-term temporal variability of GPS receiver's differential code biases (DCB):retrieving and modeling[J]. Chinese Journal of Geophysics, 2016, 59(1):101-115. [24] JEE G, LEE H B, KIM Y H, et al. Assessment of GPS global ionosphere maps (GIM) by comparison between CODE GIM and TOPEX/Jason TEC data:ionospheric perspective[J]. Journal of Geophysical Research, 2010, 115(A10):A10319. [25] 陈桂秀. 用程序求解最小二乘拟合多项式的系数[J]. 青海师范大学学报(自然科学版), 2010, 26(3):14-17. CHEN Guixiu. Solve the least square curve fitting polynomial coefficient with program[J]. Journal of Qinghai Normal University (Natural Science), 2010, 26(3):14-17. [26] LI Linyang, LÜ Zhiping, CHEN Zhengsheng, et al. GNSSer:objected-oriented and design pattern-based software for GNSS data parallel processing[J]. Journal of Spatial Science, 2019. DOI:10.1080/14498596.2019.1574245. [27] 张宝成. GNSS非差非组合精密单点定位的理论方法与应用研究[J]. 测绘学报, 2014, 43(10):1099. DOI:10.13485/j.cnki.11-2089.2014.0155. ZHANG Baocheng. Study on the theoretical methodology and applications of precise point positioning using undifferenced and uncombined GNSS data[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(10):1099. DOI:10.13485/j.cnki.11-2089.2014.0155. [28] 姚宜斌, 曹娜, 许超钤, 等. GPT2模型的精度检验与分析[J]. 测绘学报, 2015, 44(7):726-733. YAO Yibin, CAO Na, XU Chaoqian, et al. Accuracy assessment and analysis for GPT2[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(7):726-733. |