[1] 张恩泽. 探地雷达在城市工程勘察中的应用研究[D]. 淮南:安徽理工大学, 2017. ZHANG Enze. Ground penetrating radar (GPR) application in urban engineering survey research[D]. Huainan:Anhui University of Science and Technology, 2017. [2] WAI-LOK LAI W, DÉROBERT X, ANNAN P. A review of ground penetrating radar application in civil engineering:a 30-year journey from locating and testing to imaging and diagnosis[J]. NDT & E International, 2018, 96(6):58-78. [3] WINDSOR C G, CAPINERI L, FALORNI P. A data pair-labeled generalized Hough transform for radar location of buried objects[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1):124-127. [4] LI Wentao, CUI Xihong, GUO Li, et al. Tree root automatic recognition in ground penetrating radar profiles based on randomized Hough transform[J]. Remote Sensing, 2016, 8(5):430-445. [5] SAGNARD F, TAREL J P. Template-matching based detection of hyperbolas in ground-penetrating radargrams for buried utilities[J]. Journal of Geophysics and Engineering, 2016, 13(4):491-504. [6] TERRASSE G, NICOLAS J M, TROUVÉ E, et al. Automatic localization of gas pipes from GPR imagery[C]//Proceedings of the 2016 24th European Signal Processing Conference. Budapest, Hungary:IEEE, 2016:1235-1248. [7] TORRIONE P A, MORTON K D, SAKAGUCHI R, et al. Histograms of oriented gradients for landmine detection in ground-penetrating radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3):1539-1550. [8] MAAS C, SCHMALZL J. Using pattern recognition to automatically localize reflection hyperbolas in data from ground penetrating radar[J]. Computers & Geosciences, 2013, 58(8):116-125. [9] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge, MA:MIT Press, 2016. [10] 何海威, 钱海忠, 谢丽敏, 等. 立交桥识别的CNN卷积神经网络法[J]. 测绘学报, 2018, 47(3):385-395. DOI:10.11947/j.AGCS.2018.20170265. HE Haiwei, QIAN Haizhong, XIE Limin, et al. Interchange recognition method based on CNN[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(3):385-395. DOI:10.11947/j.AGCS.2018.20170265. [11] 余东行, 郭海涛, 张保明, 等. 级联卷积神经网络的遥感影像飞机目标检测[J]. 测绘学报, 2019, 48(8):1046-1058. DOI:10.11947/j.AGCS.2019.20180471. YU Donghang, GUO Haitao, ZHANG Baoming, et al. Aircraft detection in remote sensing images using cascade convolutional neural networks[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(8):1046-1058. DOI:10.11947/j.AGCS.2019.20180471. [12] 董志鹏, 王密, 李德仁, 等. 遥感影像目标的尺度特征卷积神经网络识别法[J]. 测绘学报, 2019, 48(10):1285-1295. DOI:10.11947/j.AGCS.2019.20180393. DONG Zhipeng, WANG Mi, LI Deren, et al. Object detection in remote sensing imagery based on convolutional neural networks with suitable scale features[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(10):1285-1295. DOI:10.11947/j.AGCS.2019.20180393. [13] GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1):1-15. [14] FAN Dazhao, DONG Yang, ZHANG Yongsheng. Satellite image matching method based on deep convolutional neural network[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2):90-100. [15] PHAM M T, LEFÉVRE S. Buried object detection from B-scan ground penetrating radar data using Faster-RCNN[C]//Proceedings of 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain:IEEE, 2018. [16] CHRISTOFF N, MANOLOVA A, JORDA L, et al. Morphological crater classification via convolutional neural network with application on MOLA data[C]//Proceedings of 2018 Advances in Neural Networks and Applications. St. Konstantin and Elena Resort, Bulgaria:VDE, 2018. [17] LAMERI S, LOMBARDI F, BESTAGINI P, et al. Landmine detection from GPR data using convolutional neural networks[C]//Proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO). Kos, Greece:IEEE, 2017:508-512. [18] RUSSAKOVSKY O, DENG Jia, SU Hao, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3):211-252. [19] EVERINGHAM M, ESLAMI S M A, VAN GOOL L, et al. The PASCAL visual object classes challenge:a retrospective[J]. International Journal of Computer Vision, 2015, 111(1):98-136. [20] CHEN Xinlei, FANG Hao, LIN T Y, et al. Microsoft COCO captions:data collection and evaluation server[EB/OL]. (2019-02-20)[2019-06-02]. http://cocodataset.org/. [21] REDMON J, FARHADI A. YOLOv3:an incremental improvement[EB/OL]. (2018-04-24)[2019-06-02]. https://github.com/pjreddie/darknet. [22] BUSLAEV A, PARINOV A, KHVEDCHENYA E, et al. Albumentations:fast and flexible image augmentations[EB/OL]. (2019-05-21)[2019-06-02]. https://github.com/albumentations-team/albumentations. [23] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the 3rd International Conference on Learning Representations.[S.l.]:ICLR, 2015. [24] 戴玉超, 张静, PORIKLI F, 等. 深度残差网络的多光谱遥感图像显著目标检测[J]. 测绘学报, 2018, 47(6):873-881. DOI:10.11947/j.AGCS.2018.20170633. DAI Yuchao, ZHANG Jing, PORIKLI F, et al. Salient object detection from multi-spectral remote sensing images with deep residual network[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6):873-881. DOI:10.11947/j.AGCS.2018.20170633. [25] IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning.[S.l.]:ICML, 2015:448-456. [26] CLEVERT D A, UNTERTHINER T, HOCHREITER S. Fast and accurate deep network learning by exponential linear units (ELUs)[C]//Proceedings of the 4th International Conference on Learning Representations.[S.l.]:ICLR, 2015:375-387. [27] REDMON J, FARHADI A. YOLO9000:better, faster, stronger[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI:IEEE, 2017:7263-7271. [28] KINGMA D P, BA J L. Adam:a method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations. San Diego, CA:ICLR, 2015:6980-6992. |